Skip to main content
Log in

Frictional contact problem of one-dimensional hexagonal piezoelectric quasicrystals layer

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Based on three-dimensional (3D) general solutions for one-dimensional (1D) hexagonal piezoelectric quasicrystals (PEQCs), this paper studied the frictional contact problem of 1D hexagonal PEQCs layer. The frequency response functions for 1D hexagonal PEQCs layer are analytically derived by applying double Fourier integral transforms to the general solutions and boundary conditions, which are consequently converted to the corresponding influence coefficients. The conjugate gradient method is used to obtain the unknown pressure distribution, while the discrete convolution–fast Fourier transform technique is applied to calculate the displacements and stresses of phonon and phason, electric potentials and electric displacements. Numerical results are given to reveal the influences of layer thickness, material parameters and loading conditions on the contact behavior. The obtained 3D contact solutions are not only helpful for further analysis and understanding of the coupling characteristics of phonon, phason and electric field, but also provide a reference basis for experimental analysis and material development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Shechtman, D.G., Blech, I.A., Gratias, D., Cahn, J.: Metallic phason with long-range orientational order and no translational symmetry. Phys. Rev. Lett. 53(20), 1951–1953 (1984)

    Article  Google Scholar 

  2. Levine, D., Steinhardt, P.J.: Quasicrystals: a new class of ordered structures. Phys. Rev. Lett. 53(26), 2477–2480 (1984)

    Article  Google Scholar 

  3. Dubois, J.M.: New prospects from potential applications of quasicrystalline materials. Mater. Sci. Eng. A 294, 4–9 (2000)

    Article  Google Scholar 

  4. Fujiwara, T., Trambly de Laissardière, G., Yamamoto, S.: Electronic Structure and electron transport in quasicrystals. Mater. Sci. Forum 150, 387–394 (1994)

    Article  Google Scholar 

  5. Hu, C.Z., Wang, R.H., Ding, D.H., Yang, W.: Piezoelectric elects in quasicrystals. Phys. Rev. B 56(5), 2463 (1997)

    Article  Google Scholar 

  6. Rao, K.R.M., Rao, P.H., Chaitanya, B.S.K.: Piezoelectricity in quasicrystals: a group-theoretical study. Pramana 68(3), 481–487 (2007)

    Article  Google Scholar 

  7. Li, C.L., Liu, Y.Y.: The physical property tensors of one-dimensional quasicrystals. Chin. Phys. 13(006), 924–931 (2004)

    Article  Google Scholar 

  8. Altay, G., Cengiz, D.M.: On the fundamental equations of piezoelasticity of quasicrystal media. Int. J. Solids Struct. 49(23), 3255–3262 (2012)

    Article  Google Scholar 

  9. Chen, W.Q., Ma, Y.L., Ding, H.J.: On three-dimensional elastic problems of one-dimensional hexagonal quasicrystal bodies. Mech. Res. Commun. 31(6), 633–641 (2004)

    Article  MathSciNet  Google Scholar 

  10. Li, X.Y., Deng, H.: On 2D Green’s functions for 1D hexagonal quasi-crystals. Phys. B 430, 45–51 (2013)

    Article  Google Scholar 

  11. Gao, Y., Zhao, B.S.: A general treatment of three-dimensional elasticity of quasicrystals by an operator method. Phys. Status Solidi B 243(15), 13 (2006)

    Article  Google Scholar 

  12. Wang, X., Pan, E.: Analytical solutions for some defect problems in 1D hexagonal and 2D octagonal quasicrystals. Pramana 70(5), 911–933 (2008)

    Article  Google Scholar 

  13. Gao, Y., Ricoeur, A.: Three-dimensional Green’s functions for two-dimensional quasi-crystal bimaterials. Proc. R. Soc. A 467(2133), 2622–2642 (2011)

    Article  MathSciNet  Google Scholar 

  14. Li, X.Y., Li, P.D., Wu, T.H., Zhu, Z.W.: Three-dimensional fundamental solutions for one-dimensional hexagonal quasicrystal with piezoelectric effect. Phys. Lett. A 378(10), 826–834 (2014)

    Article  MathSciNet  Google Scholar 

  15. Zhou, W.M., Fan, T.Y.: Contact problem in decagonal two-dimensional quasicrystal. J. Beijing Inst. Technol. 10(1), 51–55 (2001)

    Google Scholar 

  16. Zhao, X.F., Li, X., Ding, S.H.: Two kinds of contact problems in three-dimensional icosahedral quasicrystals. Appl. Math. Mech. 36(12), 1569–1580 (2015)

    Article  MathSciNet  Google Scholar 

  17. Zhao, X.F., Li, X., Ding, S.H.: Two kinds of contact problems in dodecagonal quasicrystalline materials of point group 12mm. Acta Mech. Solida Sin. 29(2), 167–177 (2016)

    Article  Google Scholar 

  18. Wu, Y.F., Chen, W.Q., Li, X.Y.: Indentation on one-dimensional hexagonal quasicrystals: general theory and complete exact solutions. Phil. Mag. 93(8), 858–882 (2013)

    Article  Google Scholar 

  19. Li, X.Y., Wu, F., Wu, Y.F., Chen, W.Q.: Indentation on two-dimensional hexagonal quasicrystals. Mech. Mater. 76, 121–136 (2014)

    Article  Google Scholar 

  20. Hou, P.F., Chen, B.J., Zhang, Y.: An accurate and efficient analytical method for 1D hexagonal quasicrystal coating under the tangential force based on the Green’s function. Int. J. Mech. Sci. 131, 982–1000 (2017)

    Article  Google Scholar 

  21. Hou, P.F., Chen, B.J., Zhang, Y.: An accurate and efficient analytical method for 1D hexagonal quasicrystal coating based on Green’s function. Z. Angew. Math. Phys. 68(4), 95 (2017)

    Article  MathSciNet  Google Scholar 

  22. Li C., Zhou Y. T.: Fundamental solutions and frictionless contact problem in a semi-infinite space of 2D hexagonal piezoelectric QCs. ZAMM: Ztschrift fur angewandte Mathematik und Mechanik, (2019)

  23. Zhang, X., Wang, Q., Harrison, K.L., Roberts, S.A., Harris, S.J.: Pressure-driven interface evolution in solid-state lithium metal batteries. Cell Rep. Phys. Sci. 1, 100012 (2020)

    Article  Google Scholar 

  24. Zhang, X., Wang, Q., Harrison, K.L., Jungjohann, K., Boyce, B.L., Roberts, S.A., Attia, P.M., Harris, S.J.: Rethinking how external pressure can suppress dendrites in lithium metal batteries. J. Electrochem. Soc. 166, 3639–3652 (2019)

    Article  Google Scholar 

  25. Polonsky, I.A., Keer, L.M.: A numerical method for solving rough contact problems based on the multi-level multi-summation and conjugate gradient techniques. Wear 231(2), 206–219 (1999)

    Article  Google Scholar 

  26. Liu, S., Wang, Q.: Studying contact stress fields caused by surface tractions with a discrete convolution and fast fourier transform algorithm. J. Tribol. 124(1), 36–45 (2002)

    Article  Google Scholar 

  27. Liu, S., Wang, Q., Liu, G.: A versatile method of discrete convolution and FFT (DC-FFT) for contact analyses. Wear 243, 101–111 (2000)

    Article  Google Scholar 

  28. Zhang, X., Wang, Z., Shen, H., Wang, Q.: Frictional contact involving a multiferroic thin film subjected to surface magnetoelectroelastic effects. Int. J. Mech. Sci. 131, 633–648 (2017)

    Article  Google Scholar 

  29. Zhang, X., Wang, Z.J., Shen, H.M., Wang, Q.: An efficient model for the frictional contact between two multiferroic bodies. Int. J. Solids Struct. 130, 133–152 (2018)

    Article  Google Scholar 

  30. Zhang, X., Wang, Q.: A SAM-FFT based model for 3D steady-state elastodynamic frictional contacts. Int. J. Solids Struct. 170, 53–67 (2019)

    Article  Google Scholar 

  31. Zhang, X., Wang, Q., He, T.: Transient and steady-state viscoelastic contact responses of layer-substrate systems with interfacial imperfections. J. Mech. Phys. Solids 145, 1170 (2020)

    Article  MathSciNet  Google Scholar 

  32. Ding, H.J., Chen, B., Liang, J.: General solutions for coupled equations for piezoelectric media. Int. J. Solids Struct. 33(16), 2283–2298 (1996)

    Article  Google Scholar 

  33. Jarić, M.V., Nelson, D.R.: Diffuse scattering from quasicrystals. Phys. Rev. B 37(9), 4458–4472 (1988)

    Article  Google Scholar 

  34. Coddens, G., Bellissent, R., Calvayrac, Y., Ambroise, J.P.: Evidence for phason hopping in icosahedral AlFeCu quasi-crystals. Europhys. Lett. (EPL) 16(3), 271–276 (1991)

    Article  Google Scholar 

  35. Wang, Q., Sun, L., Zhang, X., Liu, S., Zhu, D.: FFT-based methods for computational contact mechanics. Front. Mech. Eng. 6, 61 (2020)

    Article  Google Scholar 

  36. Wang, Z., Yu, C., Wang, Q.: An efficient method for solving three-dimensional fretting contact problems involving multilayered or functionally graded materials. Int. J. Solids Struct. 66, 46–61 (2015)

    Article  Google Scholar 

  37. Ding, H.J., Hou, P.F., Guo, F.L.: The elastic and electric fields for three-dimensional contact for transversely isotropic piezoelectric materials. Int. J. Solids Struct. 37(23), 3201–3229 (2000)

    Article  Google Scholar 

  38. Chen, W., Pan, E., Wang, H., Zhang, C.Z.: Theory of indentation on multiferroic composite materials. J. Mech. Phys. Solids 58(10), 1524–1551 (2010)

    Article  MathSciNet  Google Scholar 

  39. Makagon, A., Kachanov, M., Kalinin, S.V., Karapetian, E.: Indentation of spherical and conical punches into piezoelectric half-space with frictional sliding Applications to scanning probe microscopy. Phys. Rev. B 76(6), 064115 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

Financial supports from the National Natural Science Foundation of China (11762016, 11762017) and the Natural Science Foundation of Ningxia (2020AAC03057, 2021AAC03245) are acknowledged. X.Z. would like to acknowledge the supports by the Postdoctoral Science Foundation of China (2020M683278, 2021T140091) and Sichuan Science and Technology Program (2021YFG0217).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xin Zhang or Xing Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

The constants \(a\),\(b\),\(c\),\(d\) and \(e\) involved in Eqs. (5, 6) are listed as follows:

$$\begin{aligned} & a = {C_{44}}[{\xi _{33}}(R_2^2 - {C_{33}}{K_1}) - {C_{33}}e_{33}^{\prime 2} - {K_1}e_{33}^2 + 2{R_2}{e_{33}}{e^\prime }_{33}] \\ & b = {\xi _{11}}{C_{44}}(R_2^2 - {C_{33}}{K_1}) - {\xi _{33}}[{C_{11}}{C_{33}}{K_1} + {C_{11}}R_2^2 + C_{13}^2{K_1} + 2{C_{13}}{C_{44}}{K_1} - 2{C_{13}}{R_2}({R_1} + {R_3}) - {C_{33}}{C_{44}}{K_2} \\ & + {C_{33}}{({R_1} + {R_3})^2} - 2{C_{44}}{R_1}{R_2}] - {C_{11}}({C_{33}}e_{33}^{\prime 2} + {R_1}e_{33}^2 - 2{R_2}{e_{33}}{e^\prime }_{33}) + {C_{13}}e_{33}^{\prime \prime 2}({C_{13}} + 2{C_{44}}) + 2{C_{13}}{K_1}{e_{33}}({e_{15}} \\ & + {e_{31}}) - 2{C_{13}}{e^\prime }_{33}[({R_1} + {R_3}){e_{33}} + {R_2}({e_{15}} + {e_{31}})] - {C_{33}}{K_1}{({e_{15}} + {e_{31}})^2} + 2{C_{33}}{e^\prime }_{33}[({R_1} + {R_3})({e_{15}} + {e_{31}}) - {C_{44}}{e^\prime }_{15}] \\ & - {C_{44}}{K_2}e_{33}^2 + 2{C_{44}}({K_1}{e_{31}}{e_{33}} - {R_1}{e_{33}}{e^\prime }_{33} - {R_2}{e_{31}}{e^\prime }_{33} + {R_2}{e_{33}}{e^\prime }_{15}) + {[{R_2}({e_{15}} + {e_{31}}) + {e_{33}}({R_1} + {R_3})]^2} \\ & c = {\xi _{11}}{C_{11}}(R_2^2 - {C_{33}}{K_1}) + {\xi _{11}}{C_{13}}{K_1}({C_{13}} + 2{C_{44}}) - 2{\xi _{11}}{C_{13}}{R_2}({R_1} + {R_3}) + {\xi _{11}}{C_{33}}(R_1^2 - {C_{44}}{K_2}) \\ & + {\xi _{11}}{C_{33}}{R_3}(2{R_1} + {R_3}) - 2{\xi _{11}}{C_{44}}{R_1}{R_2} - {\xi _{33}}{C_{11}}({C_{33}}{K_2} + {C_{44}}{K_1} - 2{R_2}{R_3}) + {\xi _{33}}{C_{13}}({C_{13}}{K_2} + 2{C_{44}}{K_2} \\ & - 2{R_1}{R_3} - 2R_3^2) + {\xi _{33}}{C_{44}}R_1^2 - {C_{11}}(2{C_{33}}{e^\prime }_{15}{e^\prime }_{33} + {C_{44}}e_{33}^{\prime 2} + 2{K_1}{e_{15}}{e_{33}} + {K_2}e_{33}^2) + 2{C_{11}}{R_2}({e_{15}}{e^\prime }_{33} + {e_{33}}{e^\prime }_{15}) \\ & + 2{e^\prime }_{33}[{C_{11}}{R_3}{e_{33}} + {e^\prime }_{15}(C_{13}^2 + 2{C_{13}}{C_{44}})] + 2{C_{13}}({K_1}{e_{15}} + {K_2}{e_{33}})({e_{15}} + {e_{31}}) - 2{C_{13}}{R_1}({e_{15}}{e^\prime }_{33} + {e_{33}}{e^\prime }_{15}) \\ & - 2{C_{13}}{R_2}{e^\prime }_{15}({e_{15}} + {e_{31}}) - 2{C_{13}}{R_3}(2{e_{15}}{e^\prime }_{33} + {e_{31}}{e^\prime }_{33} + {e_{33}}{e^\prime }_{15}) - {C_{33}}{C_{44}}e_{15}^{\prime 2} - {C_{33}}{K_2}{({e_{15}} + {e_{31}})^2} \\ & + 2{C_{33}}{R_1}{e^\prime }_{15}({e_{15}} + {e_{31}}) + 2{C_{33}}{R_3}{e^\prime }_{15}({e_{15}} + {e_{31}}) - {C_{44}}{K_1}e_{31}^2 + 2{C_{44}}{e_{31}}({K_2}{e_{33}} + {R_1}{e^\prime }_{33}) - 2{C_{44}}{e^\prime }_{15}({R_1}{e_{33}} \\ & + {R_2}{e_{31}}) + 2R_1^2{e_{15}}{e_{33}} - 2{R_1}{R_2}{e_{15}}({e_{15}} + {e_{31}}) + 2{R_1}{R_3}{e_{15}}{e_{33}} - 2{R_3}{e_{31}}[({R_1} + {R_3}){e_{33}} - {R_2}({e_{15}} + {e_{31}})] \\ & d = - {\xi _{11}}{C_{11}}({C_{33}}{K_2} + {C_{44}}{K_1} - 2{R_2}{R_3}) + {\xi _{11}}C_{13}^2{K_2} + 2{\xi _{11}}{C_{13}}({C_{44}}{K_2} - {R_1}{R_3} - R_3^2) + {\xi _{11}}{C_{44}}R_1^2 \\ & - {\xi _{33}}{C_{11}}({C_{44}}{K_2} - R_3^2) - {C_{11}}({C_{33}}e_{15}^{\prime 2} + 2{C_{44}}{e^\prime }_{15}{e^\prime }_{33} + {K_1}e_{15}^2) - 2{C_{11}}{e_{15}}({K_2}{e_{33}} - {R_2}{e^\prime }_{15} - {R_3}{e^\prime }_{33}) \\ & + 2{C_{11}}{R_3}{e_{33}}{e^\prime }_{15} + C_{13}^2e_{15}^{\prime 2} + 2{C_{13}}{C_{44}}e_{15}^{\prime 2} + 2{C_{13}}{K_2}{e_{15}}({e_{15}} + {e_{31}}) - 2{C_{13}}{R_1}{e_{15}}{e^\prime }_{15} \\ & - 2{C_{13}}{R_3}{e^\prime }_{15}(2{e_{15}} + {e_{31}}) - {C_{44}}{K_2}e_{31}^2 + 2{R_1}{e_{31}}({C_{44}}{e^\prime }_{15} - {R_3}{e_{15}}) + R_1^2e_{15}^2 + R_3^2e_{31}^2 \\ & e = {C_{11}}(R_3^2 - {C_{44}}{K_2} - {C_{44}}e_{15}^{\prime 2} - {K_2}e_{15}^2 + 2{R_3}{e_{15}}{e^\prime }_{15}) \\ \end{aligned}$$
(23)

The constants \(a_{i} ,b_{i} ,c_{i}\) and \(d_{i}\) involved in Eqs. (5, 6) are listed as follows:

$$\begin{aligned} a_{1} & = - \xi _{{33}} (C_{{13}} K_{1} + C_{{44}} K_{1} - R_{1} R_{2} - R_{2} R_{3} ) - (C_{{13}} + C_{{44}} )e_{{33}}^{{\prime 2}} - K_{1} e_{{33}} (e_{{15}} + e_{{31}} ) + [(R_{1} + R_{3} )e_{{33}} + R_{2} (e_{{15}} + e_{{31}} )]e^{\prime } _{{33}} \\ b_{1} & = - \xi _{{11}} [(C_{{13}} + C_{{44}} )K_{1} - (R_{1} + R_{3} )R_{2} )] - \xi _{{33}} [(C_{{13}} + C_{{44}} )K_{2} - R_{1} R_{3} - R_{3}^{2} )] - 2e^{\prime } _{{15}} e^{\prime } _{{33}} (C_{{13}} + C_{{44}} ) \\ & \quad - (K_{1} e_{{15}} + K_{2} e_{{33}} )(e_{{15}} + e_{{31}} ) + R_{1} (e_{{15}} e^{\prime } _{{33}} + e_{{33}} e^{\prime } _{{15}} ) + R_{2} e^{\prime } _{{15}} (e_{{15}} + e_{{31}} ) + R_{3} (2e_{{15}} e^{\prime } _{{33}} + e_{{31}} e^{\prime } _{{33}} + e_{{33}} e^{\prime } _{{15}} ) \\ c_{1} & = - \xi _{{11}} [(C_{{13}} + C_{{44}} )K_{2} - (R_{1} + R_{3} )R_{3} ] - (C_{{13}} + C_{{44}} )e_{{15}}^{{\prime 2}} - K_{2} e_{{15}} (e_{{15}} + e_{{31}} ) + (R_{1} e_{{15}} + 2R_{3} e_{{15}} + R_{3} e_{{31}} )e^{\prime } _{{15}} \\ a_{2} & = - C_{{44}} (\xi _{{33}} K_{1} + e_{{33}}^{{\prime 2}} ) \\ b_{2} & = \xi _{{33}} [(R_{1} + R_{3} )^{2} - C_{{11}} K_{1} - C_{{44}} K_{2} ] - C_{{11}} e_{{33}}^{{\prime 2}} - C_{{44}} (\xi _{{11}} K_{1} + 2e^{\prime } _{{15}} e^{\prime } _{{33}} ) - K_{1} (e_{{15}} + e_{{31}} )^{2} \\ & \quad + 2e^{\prime } _{{33}} (e_{{15}} + e_{{31}} )(R_{1} + R_{3} ) \\ c_{2} & = \xi _{{11}} [(R_{1} + R_{3} )^{2} - C_{{11}} K_{1} - C_{{44}} K_{2} )] - C_{{44}} e_{{15}}^{{\prime 2}} - C_{{11}} (\xi _{{33}} K_{2} + 2e^{'} _{{15}} e^{'} _{{33}} ) - K_{2} (e_{{15}} + e_{{31}} )^{2} \\ & \quad + 2e^{'} _{{15}} (e_{{15}} + e_{{31}} )(R_{1} + R_{3} ) \\ d_{2} & = - C_{{11}} (\xi _{{11}} K_{2} + e_{{15}}^{{'2}} ) \\ a_{3} & = C_{{44}} (\xi _{{33}} R_{2} + e_{{33}} e^{'} _{{33}} ) \\ b_{3} & = \xi _{{11}} C_{{44}} R_{2} + \xi _{{33}} (C_{{11}} R_{2} - C_{{13}} R_{1} - C_{{13}} R_{3} - C_{{44}} R_{1} ) + C_{{11}} e_{{33}} e^{'} _{{33}} \\ & \quad - (C_{{13}} e^{'} _{{33}} + R_{1} e_{{33}} )(e_{{15}} + e_{{31}} ) - C_{{44}} (e_{{31}} e^{'} _{{33}} - e_{{33}} e^{'} _{{15}} ) + R_{2} (e_{{15}} + e_{{31}} )^{2} - R_{3} e_{{33}} (e_{{15}} + e_{{31}} ) \\ c_{3} & = \xi _{{11}} [C_{{11}} R_{2} - C_{{13}} (R_{1} + R_{3} ) - C_{{44}} R_{1} ] + C_{{11}} (\xi _{{33}} R_{3} + e_{{15}} e^{'} _{{33}} + e_{{33}} e^{'} _{{15}} ) \\ & \quad - C_{{13}} e^{'} _{{15}} (e_{{15}} + e_{{31}} ) - C_{{44}} e_{{31}} e^{'} _{{15}} - R_{1} e_{{15}}^{2} - (R_{1} - R_{3} )e_{{15}} e_{{31}} + R_{3} e_{{31}}^{2} \\ d_{3} & = C_{{11}} (\xi _{{11}} R_{3} + e_{{15}} e^{'} _{{15}} ) \\ a_{4} & = C_{{44}} (R_{2} e^{'} _{{33}} - K_{1} e_{{33}} ) \\ b_{4} & = C_{{11}} (R_{2} e^{'} _{{33}} - K_{1} e_{{33}} ) + C_{{13}} K_{1} (e_{{15}} + e_{{31}} ) - C_{{13}} e^{'} _{{33}} (R_{1} + R_{3} ) + C_{{44}} (K_{1} e_{{31}} - K_{2} e_{{33}} - R_{1} e^{'} _{{33}} + R_{2} e^{'} _{{15}} ) \\ & \quad - R_{2} (e_{{15}} + e_{{31}} )(R_{1} + R_{3} ) + (R_{1} + R_{3} )^{2} e_{{33}} \\ c_{4} & = C_{{11}} (R_{2} e^{'} _{{15}} + R_{3} e^{'} _{{33}} - K_{1} e_{{15}} - K_{2} e_{{33}} ) + C_{{13}} K_{2} (e_{{15}} + e_{{31}} ) - C_{{13}} e^{'} _{{15}} (R_{1} + R_{3} ) \\ & \quad + C_{{44}} (K_{2} e_{{31}} - R_{1} e^{'} _{{15}} ) + R_{1}^{2} e_{{15}} + R_{1} R_{3} (e_{{15}} - e_{{31}} ) - R_{3}^{2} e_{{31}} \\ d_{4} & = C_{{11}} (R_{3} e^{'} _{{15}} - K_{2} e_{{15}} ) \\ \end{aligned}$$
(24)

In order to define the constants in Eq. (7), the following auxiliary constants \(\lambda_{ki}\), \(\gamma_{ki}\) and \(\rho_{i}\) are introduced as:

$$\begin{aligned} \gamma_{0i} & = s_{i} (C_{13} \alpha_{1i} + R_{1} \alpha_{2i} + e_{31} \alpha_{3i} ) - C_{11} \\ \gamma_{1i} & = s_{i} (C_{33} \alpha_{1i} + R_{2} \alpha_{2i} + e_{33} \alpha_{3i} ) - C_{13} \\ \gamma_{2i} & = s_{i} (R_{2} \alpha_{1i} + K_{1} \alpha_{2i} + e_{33}^{{\prime }} \alpha_{3i} ) - R_{1} \\ \gamma_{3i} & = s_{i} (e_{33} \alpha_{1i} + e_{33}^{{\prime }} \alpha_{2i} + \xi_{33} \alpha_{3i} ) - e_{31} \\ \lambda_{1i} & = C_{44} (\alpha_{1i} + s_{i} ) + R_{3} \alpha_{2i} + e_{15} \alpha_{3i} \\ \lambda_{2i} & = R_{3} (\alpha_{1i} + s_{i} ) + K_{2} \alpha_{2i} + e_{15}^{{\prime }} \alpha_{3i} \\ \lambda_{3i} & = e_{15} (\alpha_{1i} + s_{i} ) + e_{15}^{{\prime }} \alpha_{2i} - \xi_{11} \alpha_{3i} \\ \rho_{1} & = C_{44} ,\rho_{2} = R_{3} ,\rho_{3} = e_{15}. \\ \end{aligned}$$
(25)

Appendix B

The intermediate variables \(p_{1} ,q_{1} ,t_{ki}^{(n)} ,a_{ki}^{(n)}\) and \(\overline{t}_{ki}^{(n)} ,\overline{a}_{ki}^{(n)}\) in Eq. (14) are:

$$\begin{aligned} t_{0i} & = - \gamma_{0i} - \gamma_{04} e^{{ - \alpha (s_{i} + s_{4} )h}} \quad (i = 1 - 4),\overline{t}_{0i} = \gamma_{0i} - \gamma_{04} e^{{\alpha (s_{i} - s_{4} )h}} \quad (i = 1 - 3) \\ t_{ki} & = \gamma_{ki} - \gamma_{k4} e^{{ - \alpha (s_{i} + s_{4} )h}} \quad (k = 1 - 3,i = 1 - 4),\overline{t}_{ki} = \gamma_{ki} - \gamma_{k4} e^{{\alpha (s_{i} - s_{4} )h}} \quad (k = 1 - 3,i = 1 - 3) \\ a_{ki} & = (\alpha_{ki} + \alpha_{k4} )e^{{ - \alpha s_{i} h}} \quad (k = 1 - 3,i = 1 - 4),\overline{a}_{ki} = ( - \alpha_{ki} + \alpha_{k4} )e^{{\alpha s_{i} h}} \quad (k = 1 - 3,i = 1 - 3) \\ t_{ki}^{(1)} & = t_{ki} - {{\overline{t}_{k3} a_{3i} } \mathord{\left/ {\vphantom {{\overline{t}_{k3} a_{3i} } {\overline{a}_{33} }}} \right. \kern-\nulldelimiterspace} {\overline{a}_{33} }}\quad (k = 0 - 3,i = 1 - 4),\overline{t}_{ki}^{(1)} = \overline{t}_{ki} - {{\overline{t}_{k3} \overline{a}_{3i} } \mathord{\left/ {\vphantom {{\overline{t}_{k3} \overline{a}_{3i} } {\overline{a}_{33} }}} \right. \kern-\nulldelimiterspace} {\overline{a}_{33} }}\quad (k = 0 - 2,i = 1,2) \\ a_{ki}^{(1)} & = a_{ki} - {{\overline{a}_{k3} a_{3i} } \mathord{\left/ {\vphantom {{\overline{a}_{k3} a_{3i} } {\overline{a}_{33} }}} \right. \kern-\nulldelimiterspace} {\overline{a}_{33} }}\quad (k = 1,2,i = 1 - 4),\overline{a}_{ki}^{(1)} = \overline{a}_{ki} - {{\overline{a}_{k3} \overline{a}_{3i} } \mathord{\left/ {\vphantom {{\overline{a}_{k3} \overline{a}_{3i} } {\overline{a}_{33} }}} \right. \kern-\nulldelimiterspace} {\overline{a}_{33} }}\quad (k = 1,2,i = 1,2) \\ t_{ki}^{(2)} & = t_{ki}^{(1)} - {{\overline{t}_{k2}^{(1)} a_{2i}^{(1)} } \mathord{\left/ {\vphantom {{\overline{t}_{k2}^{(1)} a_{2i}^{(1)} } {\overline{a}_{22}^{(1)} }}} \right. \kern-\nulldelimiterspace} {\overline{a}_{22}^{(1)} }}\quad (k = 0 - 3,i = 1 - 4),\overline{t}_{k1}^{(2)} = \overline{t}_{k1}^{(1)} - {{\overline{t}_{k2} \overline{a}_{21}^{(1)} } \mathord{\left/ {\vphantom {{\overline{t}_{k2} \overline{a}_{21}^{(1)} } {\overline{a}_{22}^{(1)} }}} \right. \kern-\nulldelimiterspace} {\overline{a}_{22}^{(1)} }}\quad (k = 0 - 3) \\ a_{1i}^{(2)} & = a_{1i}^{(1)} - {{\overline{a}_{12}^{(1)} a_{21}^{(1)} } \mathord{\left/ {\vphantom {{\overline{a}_{12}^{(1)} a_{21}^{(1)} } {\overline{a}_{22}^{(1)} }}} \right. \kern-\nulldelimiterspace} {\overline{a}_{22}^{(1)} }}(i = 1 - 4),\overline{a}_{11}^{(2)} = \overline{a}_{11}^{(1)} - {{\overline{a}_{12}^{(1)} \overline{a}_{21}^{(1)} } \mathord{\left/ {\vphantom {{\overline{a}_{12}^{(1)} \overline{a}_{21}^{(1)} } {\overline{a}_{22}^{(1)} }}} \right. \kern-\nulldelimiterspace} {\overline{a}_{22}^{(1)} }} \\ t_{ki}^{(3)} & = t_{ki}^{(2)} - {{\overline{t}_{k1}^{(2)} a_{1i}^{(2)} } \mathord{\left/ {\vphantom {{\overline{t}_{k1}^{(2)} a_{1i}^{(2)} } {\overline{a}_{11}^{(2)} }}} \right. \kern-\nulldelimiterspace} {\overline{a}_{11}^{(2)} }}\quad (k = 0 - 3,i = 1 - 4) \\ t_{ki}^{(4)} & = t_{ki}^{(3)} - {{t_{k4}^{(3)} t_{3i}^{(3)} } \mathord{\left/ {\vphantom {{t_{k4}^{(3)} t_{3i}^{(3)} } {t_{34}^{(3)} }}} \right. \kern-\nulldelimiterspace} {t_{34}^{(3)} }}\quad (k = 0 - 2,i = 1 - 3) \\ t_{ki}^{(5)} & = t_{ki}^{(4)} - {{t_{k3}^{(4)} t_{2i}^{(4)} } \mathord{\left/ {\vphantom {{t_{k3}^{(4)} t_{2i}^{(4)} } {t_{23}^{(4)} }}} \right. \kern-\nulldelimiterspace} {t_{23}^{(4)} }}\quad (k = 0,1,i = 1,2) \\ t_{01}^{(6)} & = t_{01}^{(5)} - {{t_{02}^{(5)} t_{11}^{(5)} } \mathord{\left/ {\vphantom {{t_{02}^{(5)} t_{11}^{(5)} } {t_{12}^{(5)} }}} \right. \kern-\nulldelimiterspace} {t_{12}^{(5)} }} \\ p_{1} & = {{\tilde{\tilde{p}}_{z} } \mathord{\left/ {\vphantom {{\tilde{\tilde{p}}_{z} } {\alpha^{2} }}} \right. \kern-\nulldelimiterspace} {\alpha^{2} }} - {{\tilde{\tilde{q}}_{z} t_{14}^{(3)} } \mathord{\left/ {\vphantom {{\tilde{\tilde{q}}_{z} t_{14}^{(3)} } {(t_{34}^{(3)} \alpha^{2} }}} \right. \kern-\nulldelimiterspace} {(t_{34}^{(3)} \alpha^{2} }}) - {{q_{1} t_{13}^{(4)} } \mathord{\left/ {\vphantom {{q_{1} t_{13}^{(4)} } {t_{23}^{(4)} }}} \right. \kern-\nulldelimiterspace} {t_{23}^{(4)} }},q_{1} = {{\tilde{\tilde{h}}_{z} } \mathord{\left/ {\vphantom {{\tilde{\tilde{h}}_{z} } {\alpha^{2} }}} \right. \kern-\nulldelimiterspace} {\alpha^{2} }} - {{\tilde{\tilde{q}}_{z} t_{24}^{(3)} } \mathord{\left/ {\vphantom {{\tilde{\tilde{q}}_{z} t_{24}^{(3)} } {(t_{34}^{(3)} \alpha^{2} )}}} \right. \kern-\nulldelimiterspace} {(t_{34}^{(3)} \alpha^{2} )}}. \\ \end{aligned}$$
(26)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, R., Ding, S., Zhang, X. et al. Frictional contact problem of one-dimensional hexagonal piezoelectric quasicrystals layer. Arch Appl Mech 91, 4693–4716 (2021). https://doi.org/10.1007/s00419-021-02018-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-021-02018-9

Keywords

Navigation