Skip to main content
Log in

Nonlinear dynamic stability analysis of three-dimensional graphene foam-reinforced polymeric composite cylindrical shells subjected to periodic axial loading

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

This paper investigates the nonlinear dynamic stability of three-dimensional graphene foam (3D-GrF)-reinforced polymeric composite (RPC) cylindrical shells under the periodic axial loading. Three types of foam distribution are considered and the effective Young’s modulus, Poisson’s ratio and mass density of 3D-GrFRPC shells are obtained by using the mixing rule. Hamilton’s principle is implemented to derive the differential equations of motion on the basis of Donnell’s shell theory and von Kàrmàn geometric nonlinearity. In the framework of the Galerkin method and Airy stress function, the nonlinear transverse vibration differential equation is transformed to the Mathieu–Hill equation. Moreover, the explicit expressions of steady-state vibration amplitude of 3D-GrFRPC shells are obtained via Bolotin’s method. Finally, the effects of foam coefficient, foam distribution, dynamic load factor, static load factor and shell geometry parameters on the nonlinear dynamic stability of 3D-GrFRPC cylindrical shells are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Amani, H., Mostafavi, E., Arzaghi, H., Davaran, S., Akbarzadeh, A., Akhavan, O., Pazoki-Toroudi, H., Webster, T.J.: Three-dimensional graphene foams: synthesis, properties, biocompatibility, biodegradability, and applications in tissue engineering. ACS Biomater. Sci. Eng. 5(1), 193–214 (2018)

    Article  Google Scholar 

  2. Weng, D., Song, L., Li, W., Yan, J., Chen, L., Liu, Y.: Review on synthesis of three-dimensional graphene skeletons and their absorption performance for oily wastewater. Environ. Sci. Pollut. Res. 28(1), 16–34 (2021)

    Article  Google Scholar 

  3. Chen, Z., Ren, W., Gao, L., Liu, B., Pei, S., Cheng, H.-M.: Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat. Mater. 10(6), 424–428 (2011)

    Article  Google Scholar 

  4. Li, Y., Chen, J., Huang, L., Li, C., Hong, J.D., Shi, G.: Highly compressible macroporous graphene monoliths via an improved hydrothermal process. Adv. Mater. 26(28), 4789–4793 (2014)

    Article  Google Scholar 

  5. Hu, C., Xue, J., Dong, L., Jiang, Y., Wang, X., Qu, L., Dai, L.: Scalable preparation of multifunctional fire-retardant ultralight graphene foams. ACS Nano 10(1), 1325–1332 (2016)

    Article  Google Scholar 

  6. Sha, J., Gao, C., Lee, S.-K., Li, Y., Zhao, N., Tour, J.M.: Preparation of three-dimensional graphene foams using powder metallurgy templates. ACS Nano 10(1), 1411–1416 (2016)

    Article  Google Scholar 

  7. Lv, L., Zhang, P., Cheng, H., Zhao, Y., Zhang, Z., Shi, G., Qu, L.: Solution-processed ultraelastic and strong air-bubbled graphene foams. Small 12(24), 3229–3234 (2016)

    Article  Google Scholar 

  8. Strek, W., Tomala, R., Lukaszewicz, M., Cichy, B., Gerasymchuk, Y., Gluchowski, P., Marciniak, L., Bednarkiewicz, A., Hreniak, D.: Laser induced white lighting of graphene foam. Sci. Rep. 7(1), 1–9 (2017)

    Article  Google Scholar 

  9. Huang, X., Qian, K., Yang, J., Zhang, J., Li, L., Yu, C., Zhao, D.: Functional nanoporous graphene foams with controlled pore sizes. Adv. Mater. 24(32), 4419–4423 (2012)

    Article  Google Scholar 

  10. Yavari, F., Chen, Z., Thomas, A.V., Ren, W., Cheng, H.-M., Koratkar, N.: High sensitivity gas detection using a macroscopic three-dimensional graphene foam network. Sci. Rep. 1(1), 1–5 (2011)

    Article  Google Scholar 

  11. Chen, S., Bao, P., Huang, X., Sun, B., Wang, G.: Hierarchical 3D mesoporous silicon@ graphene nanoarchitectures for lithium ion batteries with superior performance. Nano Res. 7(1), 85–94 (2014)

    Article  Google Scholar 

  12. Wu, Y., Yi, N., Huang, L., Zhang, T., Fang, S., Chang, H., Li, N., Oh, J., Lee, J.A., Kozlov, M.: Three-dimensionally bonded spongy graphene material with super compressive elasticity and near-zero Poisson’s ratio. Nat. Commun. 6(1), 1–9 (2015)

    Google Scholar 

  13. Xu, X., Zhang, Q., Yu, Y., Chen, W., Hu, H., Li, H.: Naturally dried graphene aerogels with superelasticity and tunable Poisson’s ratio. Adv. Mater. 28(41), 9223–9230 (2016)

    Article  Google Scholar 

  14. Qiu, L., Huang, B., He, Z., Wang, Y., Tian, Z., Liu, J.Z., Wang, K., Song, J., Gengenbach, T.R., Li, D.: Extremely low density and super-compressible Graphene cellular materials. Adv. Mater. 29(36), 1701553 (2017)

    Article  Google Scholar 

  15. Ye, C., Wang, Y.Q.: On the use of Chebyshev polynomials in the Rayleigh-Ritz method for vibration and buckling analyses of circular cylindrical three-dimensional graphene foam shells. Mech. Based Des. Struct. Mach. 49(7), 932–946 (2021)

    Article  Google Scholar 

  16. Wang, Y.Q., Zhang, Z.Y.: Bending and buckling of three-dimensional graphene foam plates. Res. Phys. 13, 102136 (2019)

    Google Scholar 

  17. Wang, Y.Q., Teng, M.W.: Vibration analysis of circular and annular plates made of 3D graphene foams via Chebyshev-Ritz method. Aerosp. Sci. Technol. 95, 105440 (2019)

    Article  Google Scholar 

  18. Kumar, A., Gunasekaran, V., Pitchaimani, J.: Acoustic response behavior of porous 3D graphene foam plate. Appl. Acoust. 169, 107431 (2020)

    Article  Google Scholar 

  19. Zhang, F., Bai, C.Y., Zhang, Y., Cao, D.Y.: Dynamic stability analysis of functionally graded three-dimensional graphene foam cylindrical microshells under interior pressure based on modified strain gradient theory. Eur. Phys. J. Plus 137(2), 1–19 (2022)

    Article  Google Scholar 

  20. Jia, J., Sun, X., Lin, X., Shen, X., Mai, Y.-W., Kim, J.-K.: Exceptional electrical conductivity and fracture resistance of 3D interconnected graphene foam/epoxy composites. ACS Nano 8(6), 5774–5783 (2014)

    Article  Google Scholar 

  21. Ni, Y., Chen, L., Teng, K., Shi, J., Qian, X., Xu, Z., Tian, X., Hu, C., Ma, M.: Superior mechanical properties of epoxy composites reinforced by 3D interconnected graphene skeleton. ACS Appl. Mater. Interfaces 7(21), 11583–11591 (2015)

    Article  Google Scholar 

  22. Wang, M., Duan, X., Xu, Y., Duan, X.: Functional three-dimensional graphene/polymer composites. ACS NANO 10(8), 7231–7247 (2016)

    Article  Google Scholar 

  23. Embrey, L., Nautiyal, P., Loganathan, A., Idowu, A., Boesl, B., Agarwal, A.: Three-dimensional graphene foam induces multifunctionality in epoxy nanocomposites by simultaneous improvement in mechanical, thermal, and electrical properties. ACS Appl. Mater. Interfaces 9(45), 39717–39727 (2017)

    Article  Google Scholar 

  24. Guan, L.-Z., Zhao, L., Wan, Y.-J., Tang, L.-C.: Three-dimensional graphene-based polymer nanocomposites: preparation, properties and applications. Nanoscale 10(31), 14788–14811 (2018)

    Article  Google Scholar 

  25. Chen, Z., Xu, C., Ma, C., Ren, W., Cheng, H.M.: Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv. Mater. 25(9), 1296–1300 (2013)

    Article  Google Scholar 

  26. Esmaeili, H., Kiani, Y., Beni, Y.T.: Vibration characteristics of composite doubly curved shells reinforced with graphene platelets with arbitrary edge supports. Acta Mech. 233(2), 665–683 (2022)

    Article  MATH  Google Scholar 

  27. Yang, F.L., Wang, Y.Q.: Free and forced vibration of beams reinforced by 3 D graphene foam. Int. J. Appl. Mech. 12(05), 2050056 (2020)

    Article  Google Scholar 

  28. Teng, M.W., Wang, Y.Q.: Nonlinear free vibration of rectangular plates reinforced with 3D graphene foam: approximate analytical solution. Res. Phys. 17, 103147 (2020)

    Google Scholar 

  29. Al-Furjan, M., Habibi, M., Safarpour, H.: Vibration control of a smart shell reinforced by graphene nanoplatelets. Int. J. Appl. Mech. 12(06), 2050066 (2020)

    Article  Google Scholar 

  30. Mojiri, H.R., Salami, S.J.: Free vibration and dynamic transient response of functionally graded composite beams reinforced with graphene nanoplatelets (GPLs) resting on elastic foundation in thermal environment. Mech. Based Des. Struct. 50(6), 1872–1892 (2022)

    Article  Google Scholar 

  31. Liu, D., Li, Z., Kitipornchai, S., Yang, J.: Three-dimensional free vibration and bending analyses of functionally graded graphene nanoplatelets-reinforced nanocomposite annular plates. Compos. Struct. 229, 111453 (2019)

    Article  Google Scholar 

  32. Civalek, Ö., Dastjerdi, S., Akgöz, B.: Buckling and free vibrations of CNT-reinforced cross-ply laminated composite plates. Mech. Based Des. Struct. 50(6), 1914–1931 (2022)

    Article  Google Scholar 

  33. Dastjerdi, S., Malikan, M., Eremeyev, V.A., Akgöz, B., Civalek, Ö.: On the generalized model of shell structures with functional cross-sections. Compos. Struct. 272, 114192 (2021)

    Article  Google Scholar 

  34. Dastjerdi, S., Naeijian, F., Akgöz, B., Civalek, Ö.: On the mechanical analysis of microcrystalline cellulose sheets. Int. J. Eng. Sci. 166, 103500 (2021)

    Article  MATH  Google Scholar 

  35. Dastjerdi, S., Akgöz, B., Civalek, Ö., Malikan, M., Eremeyev, V.A.: On the non-linear dynamics of torus-shaped and cylindrical shell structures. Int. J. Eng. Sci. 156, 103371 (2020)

    Article  MATH  Google Scholar 

  36. Karimiasl, M., Ebrahimi, F., Akgöz, B.: Buckling and post-buckling responses of smart doubly curved composite shallow shells embedded in SMA fiber under hygro-thermal loading. Compos. Struct. 223, 110988 (2019)

    Article  Google Scholar 

  37. Bagheri, H., Kiani, Y., Bagheri, N., Eslami, M.: Free vibration of joined cylindrical–hemispherical FGM shells. Arch. Appl. Mech. 90(10), 2185–2199 (2020)

    Article  MATH  Google Scholar 

  38. Sun, S., Liu, L.: Parametric study and stability analysis on nonlinear traveling wave vibrations of rotating thin cylindrical shells. Arch. Appl. Mech. 91(6), 2833–2851 (2021)

    Article  Google Scholar 

  39. Jabbari, M., Mojahedin, A., Khorshidvand, A., Eslami, M.: Buckling analysis of a functionally graded thin circular plate made of saturated porous materials. J. Eng. Mech. 140(2), 287–295 (2013)

    Google Scholar 

  40. Ye, C., Wang, Y.Q.: Nonlinear forced vibration of functionally graded graphene platelet-reinforced metal foam cylindrical shells: internal resonances. Nonlinear Dyn. 104(3), 2051–2069 (2021)

    Article  Google Scholar 

  41. Teng, M.W., Wang, Y.Q.: Nonlinear forced vibration of simply supported functionally graded porous nanocomposite thin plates reinforced with graphene platelets. Thin-Wall Struct. 164, 107799 (2021)

    Article  Google Scholar 

  42. Wang, Y.Q., Ye, C., Zhu, J.: Chebyshev collocation technique for vibration analysis of sandwich cylindrical shells with metal foam core. ZAMM-J. Appl. Math. Mech. Z. Angew. Math. Mech. 100(5), e201900199 (2020)

    Google Scholar 

  43. Wang, Y., Wu, H., Yang, F., Wang, Q.: An efficient method for vibration and stability analysis of rectangular plates axially moving in fluid. Appl. Math. Mech. 42(2), 291–308 (2021)

    Article  MATH  Google Scholar 

  44. Chai, Q., Wang, Y.Q.: A general approach for free vibration analysis of spinning joined conical–cylindrical shells with arbitrary boundary conditions. Thin-Wall Struct. 168, 108243 (2021)

    Article  Google Scholar 

  45. Wang, J., Wang, Y.Q., Chai, Q.: Free vibration analysis of a spinning functionally graded spherical–cylindrical–conical shell with general boundary conditions in a thermal environment. Thin-Wall Struct. 180, 109768 (2022)

    Article  Google Scholar 

  46. Clyne, T.W., Hull, D.: An Introduction to Composite Materials. Cambridge University Press, Cambridge (2019)

    Book  Google Scholar 

  47. Chandra, Y., Chowdhury, R., Scarpa, F., Adhikari, S., Sienz, J., Arnold, C., Murmu, T., Bould, D.: Vibration frequency of graphene based composites: a multiscale approach. Mater. Sci. Eng. B 177(3), 303–310 (2012)

    Article  Google Scholar 

  48. Chai, Q., Wang, Y.Q.: Traveling wave vibration of graphene platelet reinforced porous joined conical-cylindrical shells in a spinning motion. Eng. Struct. 252, 113718 (2022)

    Article  Google Scholar 

  49. Xu, H., Wang, Y.Q., Zhang, Y.: Free vibration of functionally graded graphene platelet-reinforced porous beams with spinning movement via differential transformation method. Arch. Appl. Mech. 91(12), 4817–4834 (2021)

    Article  Google Scholar 

  50. Wang, Y.Q., Ye, C., Zu, J.W.: Nonlinear vibration of metal foam cylindrical shells reinforced with graphene platelets. Aerosp. Sci Technol. 85, 359–370 (2019)

    Article  Google Scholar 

  51. Qin, Z., Jung, G.S., Kang, M.J., Buehler, M.J.: The mechanics and design of a lightweight three-dimensional graphene assembly. Sci. Adv. 3(1), e1601536 (2017)

    Article  Google Scholar 

  52. Nieto, A., Boesl, B., Agarwal, A.: Multi-scale intrinsic deformation mechanisms of 3D graphene foam. Carbon 85, 299–308 (2015)

    Article  Google Scholar 

  53. Amabili, M.: Nonlinear Vibrations and Stability of Shells and Plates. Cambridge University Press, Cambridge (2008)

    Book  MATH  Google Scholar 

  54. Soedel, W.: Vibrations of Shells and Plates. CRC Press, Florida (2004)

    Book  MATH  Google Scholar 

  55. Wang, Y.Q.: Electro-mechanical vibration analysis of functionally graded piezoelectric porous plates in the translation state. Acta Astronaut. 143, 263–271 (2018)

    Article  Google Scholar 

  56. Zhang, Y., Zhang, F.: Vibration and buckling of shear deformable functionally graded nanoporous metal foam nanoshells. Nanomaterials 9(2), 271 (2019)

    Article  Google Scholar 

  57. Dowell, E., Ventres, C.: Modal equations for the nonlinear flexural vibrations of a cylindrical shell. Int. J. Solids Struct. 4(10), 975–991 (1968)

    Article  MATH  Google Scholar 

  58. Atluri, S.: A perturbation analysis of non-linear free flexural vibrations of a circular cylindrical shell. Int. J. Solids Struct. 8(4), 549–569 (1972)

    Article  MATH  Google Scholar 

  59. Darabi, M., Darvizeh, M., Darvizeh, A.: Non-linear analysis of dynamic stability for functionally graded cylindrical shells under periodic axial loading. Compos. Struct. 83(2), 201–211 (2008)

    Article  Google Scholar 

  60. Duc, N.D., Cong, P.H., Quang, V.D.: Nonlinear dynamic and vibration analysis of piezoelectric eccentrically stiffened FGM plates in thermal environment. Int. J. Mech. Sci. 115, 711–722 (2016)

    Article  Google Scholar 

  61. Darabi, M., Ganesan, R.: Non-linear dynamic instability analysis of laminated composite cylindrical shells subjected to periodic axial loads. Compos. Struct. 147, 168–184 (2016)

    Article  Google Scholar 

  62. Talimian, A., Béda, P.: Dynamic stability of a size-dependent micro-beam. Eur. J. Mech. A Solids. 72, 245–251 (2018)

    Article  MATH  Google Scholar 

  63. Mohamadi, A., Ghasemi, F.A., Shahgholi, M.: Forced Nonlinear vibration and bifurcation analysis of circular cylindrical nanocomposite shells using the normal form. Int. J. Non-Linear Mech. 134, 103733 (2021)

    Article  Google Scholar 

  64. Bolotin, V.: Dynamic stability of elastic systems. (1962)

  65. An, H., Zhou, L., Wei, X., An, W.: Nonlinear analysis of dynamic stability for the thin cylindrical shells of supercavitating vehicles. Adv. Mech. Eng. 9(1), 1687814016685657 (2016)

    Google Scholar 

  66. Wang, Y.Q., Liang, L., Guo, X.H.: Internal resonance of axially moving laminated circular cylindrical shells. J. Sound Vib. 332(24), 6434–6450 (2013)

    Article  Google Scholar 

  67. Darabi, M., Ganesan, R.: Nonlinear dynamic instability analysis of laminated composite thin plates subjected to periodic in-plane loads. Nonlinear Dyn. 91(1), 187–215 (2018)

    Article  Google Scholar 

  68. Pellicano, F.: Vibrations of circular cylindrical shells: theory and experiments. J. Sound Vib. 303(1–2), 154–170 (2007)

    Article  Google Scholar 

  69. Ng, T., Lam, K., Liew, K., Reddy, J.: Dynamic stability analysis of functionally graded cylindrical shells under periodic axial loading. Int. J. Solids Struct. 38(8), 1295–1309 (2001)

    Article  MATH  Google Scholar 

  70. Timoshenko, S.P., Gere, J.M.: Theory of elastic stability. Courier Corporation (2009).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Zhang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

$$ M_{mn} = - 16A_{11}^{2} L^{4} \pi R^{4} \left[ {A_{11} A_{66} L^{4} n^{4} - \left( {A_{12}^{2} - A_{11}^{2} + 2A_{12} A_{66} } \right)L^{2} m^{2} n^{2} \pi^{2} R^{2} + A_{11} A_{66} m^{4} \pi^{4} R^{4} } \right]\rho_{t} $$
(A.1)
$$ Q_{mn} = 16A_{11}^{2} L^{2} m^{2} \pi^{3} R^{4} \left[ { - A_{11} A_{66} L^{4} n^{4} + \left( {A_{12}^{2} - A_{11}^{2} + 2A_{12} A_{66} } \right)L^{2} m^{2} n^{2} \pi^{2} R^{2} - A_{11} A_{66} m^{4} \pi^{4} R^{4} } \right] $$
(A.2)
$$ \eta_{mn} = \pi \left[ {A_{11} \left( {L^{4} n^{4} + m^{4} \pi^{4} R^{4} } \right)} \right]\left( {A_{12}^{2} - A_{11}^{2} } \right)\left[ {A_{11} A_{66} L^{4} n^{4} - \left( {A_{12}^{2} - A_{11}^{2} + 2A_{12} A_{66} } \right)L^{2} m^{2} n^{2} \pi^{2} R^{2} + A_{11} A_{66} m^{4} \pi^{4} R^{4} } \right] $$
(A.3)
$$ \begin{aligned} K_{mn} = & 16A_{11}^{2} \pi \left\{ {A_{66} \left( {B_{11}^{2} - A_{11} D_{11} } \right)L^{8} n^{8} } \right. + \left\{ {B_{11} \left[ {A_{11} B_{11} - 2A_{12} \left( {B_{12} + 2B_{66} } \right)} \right]} \right. + A_{12} \left( {A_{12} + 2A_{66} } \right)D_{11} \\ & \quad + \left. {A_{11} \left[ {\left( {B_{12} + 2B_{66} } \right)^{2} - A_{11} D_{11} - 2A_{66} \left( {D_{12} + 2D_{66} } \right)} \right]} \right\}L^{6} m^{2} n^{6} \pi^{2} R^{2} + 2A_{66} \left( { - A_{11} B_{12} + A_{12} B_{11} } \right)L^{6} m^{2} n^{4} \pi^{2} R^{3} \\ & \quad - \left\{ {2A_{66} B_{11}^{2} - 2A_{11} B_{12} B_{11} - 4A_{11} B_{11} B_{66} + A_{11} A_{66} D_{11} - 2A_{12}^{2} \left( {D_{12} + 2D_{66} } \right) + A_{11} \left[ { - 2B_{11} } \right.\left( {B_{12} + 2B_{66} } \right)} \right. \\ & \quad + \left. {A_{66} D_{11} + 2A_{11} D_{12} + 4A_{11} D_{66} } \right] + \left. {2A_{12} \left[ {B_{11}^{2} + \left( {B_{12} + 2B_{66} } \right)^{2} - 2A_{66} \left( {D_{12} + 2D_{66} } \right)} \right]} \right\}L^{4} m^{4} n^{4} \pi^{4} R^{4} \\ & \quad - 2\left( {2A_{11} A_{66} B_{11} - 2A_{12} A_{66} B_{12} + 2A_{12}^{2} B_{66} - 2A_{11}^{2} B_{66} } \right)L^{4} m^{4} n^{2} \pi^{4} R^{5} \\ & \quad + L^{2} m^{4} \pi^{4} \left\{ {\left( {A_{12}^{2} - A_{11}^{2} } \right)A_{66} L^{2} + \left\{ { - 2A_{12} B_{11} \left( {B_{12} + 2B_{66} } \right) + A_{12}^{2} D_{11} + 2A_{12} A_{66} D_{11} } \right.} \right. \\ & \quad + \left. {A_{11} \left( {B_{11}^{2} - A_{11} D_{11} } \right) + \left. {A_{11} \left[ {\left( {B_{12} + 2B_{66} } \right)^{2} - 2A_{66} \left( {D_{12} + 2D_{66} } \right)} \right]} \right\}m^{2} n^{2} \pi^{2} } \right\}R^{6} \\ & \quad + 2A_{66} \left( {A_{12} B_{11} - A_{11} B_{12} } \right)L^{2} m^{6} \pi^{6} R^{7} + \left. {A_{66} \left( {B_{11}^{2} - A_{11} D_{11} } \right)m^{8} \pi^{8} R^{8} } \right\}. \\ \end{aligned} $$
(A.4)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, F., Bai, C.Y. & Wang, J.Z. Nonlinear dynamic stability analysis of three-dimensional graphene foam-reinforced polymeric composite cylindrical shells subjected to periodic axial loading. Arch Appl Mech 93, 503–524 (2023). https://doi.org/10.1007/s00419-022-02282-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-022-02282-3

Keywords

Navigation