Skip to main content
Log in

Nonlinear resonance of axially moving graphene platelet-reinforced metal foam cylindrical shells with geometric imperfection

  • Original Article
  • Published:
Archives of Civil and Mechanical Engineering Aims and scope Submit manuscript

Abstract

The present work pays attention to the primary resonance of axially moving graphene-reinforced mental foam (GPLRMF) cylindrical shells with geometric imperfection. Porosities and graphene platelets (GPLs) are uniformly or non-uniformly distributed along the thickness direction of the cylindrical shell. Considering the influences of initial geometric imperfection and axial velocity, the equivalent elastic modulus is calculated by Halpin–Tsai model, and the equivalent density and Poisson’s ratio are described by the mixture rule. Using the energy principle, the nonlinear equations of motion are derived. Considering two different boundary conditions, the nonlinear primary resonance response is obtained using the modified Lindstedt Poincare (MLP) method. The results indicate that the MLP method can effectively overcome the limitation of traditional perturbation method. In the end, we study the effects of the GPLs distribution patterns, GPLs weight fraction, the porosity coefficient, axial velocity, initial geometric imperfection, and the prestressing force on the resonance problems. It can be found that the presence of initial geometric imperfection can alter the frequency response curve from the characteristics of the hard spring to the soft spring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Date will be made available on reasonable request.

References

  1. Wang YQ, Zu JW. Vibration behaviors of functionally graded rectangular plates with porosities and moving in thermal environment. Aerosp Sci Technol. 2017;69:550–62.

    Article  Google Scholar 

  2. Yang FL, Wang YQ, Liu YF. Low-velocity impact response of axially moving functionally graded graphene platelet reinforced metal foam plates. Aerosp Sci Technol. 2022;123: 107496.

    Article  Google Scholar 

  3. Ghayesh MH, Amabili M, Paidoussis MP. Nonlinear dynamics of axially moving plates. J Sound Vib. 2013;332:391–406.

    Article  ADS  Google Scholar 

  4. Yang XD, Chen LQ, Zu JW. Vibrations and stability of an axially moving rectangular composite plate. J Appl Mech-T Asme. 2011;78: 011018.

    Article  Google Scholar 

  5. Yang XD, Zhang W, Yao MH. Dynamical analysis of axially moving plate by finite difference method. Nonlinear Dynam. 2012;67:997–1006.

    Article  MathSciNet  Google Scholar 

  6. Arani AG, Haghparast E. Vibration analysis of axially moving carbon nanotube-reinforced composite plate under initial tension. Poly Compos. 2017;38:814–22.

    Article  CAS  Google Scholar 

  7. Zhou YF, Wang ZM. Dynamic instability of axially moving viscoelastic plate. Eur J Mech A-Solids. 2019;73:1–10.

    Article  MathSciNet  Google Scholar 

  8. Chen LQ, Ding H. Steady-state transverse response in coupled planar vibration of axially moving viscoelastic beams. J Vib Acoust. 2010;132: 011018.

    Article  Google Scholar 

  9. Ding H, Zhang GC, Chen LQ, Yang SP. Forced vibrations of supercritically transporting viscoelastic beams. J Vib Acoust. 2012;134: 051007.

    Article  Google Scholar 

  10. Zhang W, Sun L, Yang X, Jia P. Nonlinear dynamic behaviors of a deploying and-retreating wing with varying velocity. J Sound Vib. 2013;332:6785–97.

    Article  ADS  Google Scholar 

  11. Farokhi H, Ghayesh MH. Nonlinear motion characteristics of microarches under axial loads based on modified couple stress theory. Archiv Civil Mech Eng. 2015;15(2):401–11.

    Article  Google Scholar 

  12. Abolhassanpour H, Ghasemi FA, Mohamadi A. Stability and vibration analysis of an axially moving thin walled conical shell. J Vib Control. 2021;28(13–14):1655–72.

    MathSciNet  Google Scholar 

  13. Mohamadi A, Shahgholi M, Ghasemi FA. Nonlinear vibration of axially moving simply-supported circular cylindrical shell. Thin Wall Struct. 2020;156: 107026.

    Article  Google Scholar 

  14. Wang YQ, Liang L, Guo XH. Internal resonance of axially moving laminated circular cylindrical shells. J Sound Vib. 2013;332:6434–50.

    Article  ADS  Google Scholar 

  15. Liu H, Wi H, Lyu Z. Nonlinear resonance of FG multilayer beam-type nanocomposites: effects of graphene nanoplatelet-reinforcement and geometric imperfection. Aerosp Sci Technol. 2020;98: 105702.

    Article  Google Scholar 

  16. Lin BC, Zhu B, Chen B, Han J, Li YH. Nonlinear primary resonance behaviors of rotating FG-CNTRC beams with geometric imperfections. Aerosp Sci Technol. 2022;121: 107333.

    Article  Google Scholar 

  17. Feng X, Fan XY, Li Y, Zhang H, Zhang LL, Gao Y. Static response and free vibration analysis for cubic quasicrystal laminates with imperfect interfaces. Eur J Mech A-Solid. 2021;90: 104365.

    Article  MathSciNet  Google Scholar 

  18. Li ZM, Liu T. A new displacement model for nonlinear vibration analysis of fluid-conveying anisotropic laminated tubular beams resting on elastic foundation. Eur J Mech A-Solid. 2021;86: 104172.

    Article  MathSciNet  ADS  Google Scholar 

  19. Gu XJ, Hao YX, Chen J. Dynamic stability of rotating cantilever composite thin walled twisted plate with initial geometric imperfection under in-plane load. Thin Wall Struct. 2019;144: 106267.

    Article  Google Scholar 

  20. Gu XJ, Hao YX, Chen J. Free vibration of rotating cantilever pre-twisted panel with initial exponential function type geometric imperfection. Appl Math Model. 2019;68:327–52.

    Article  MathSciNet  Google Scholar 

  21. Liu L, Li JM, Kardomateas GA. Nonlinear vibration of a composite plate to harmonic excitation with initial geometric imperfection in thermal environments. Compos Struct. 2019;209:401–23.

    Article  Google Scholar 

  22. Thang PT, Thoi TN, Lee J. Closed-form solution for nonlinear buckling analysis of FG-CNTRC cylindrical shells with initial geometric imperfections. Eur J Mech A-Solid. 2019;73:483–91.

    Article  MathSciNet  Google Scholar 

  23. Gholami R, Ansari R. The effect of initial geometric imperfection on the nonlinear resonance of functionally graded carbon nanotube-reinforced composite rectangular plates. Appl Math Mech Engl. 2018;39:1219–38.

    Article  MathSciNet  Google Scholar 

  24. Tomarn SS, Talha M. Thermo-mechanical buckling analysis of functionally graded skew laminated plates with initial geometric imperfections. Int J Appl Mech. 2018;10:1850014.

    Article  Google Scholar 

  25. Li W, Hao YX, Zhang W, Yang H. Resonance response of clamped functionally graded cylindrical shells with initial imperfection in thermal environments. Compos Struct. 2020;259: 113245.

    Article  Google Scholar 

  26. Rodrigues L, Silva FMA, Goncalves PB. Influence of initial geometric imperfections on the 1:1:1:1 internal resonances and nonlinear vibrations of thin-walled cylindrical shells. Thin Wall Struct. 2020;151: 106730.

    Article  Google Scholar 

  27. Salehi M, Gholami R, Ansari R. Nonlinear resonance of functionally graded porous circular cylindrical shells reinforced by graphene platelet with initial imperfections using higher-order shear deformation theory. Int J Struct Stab Dyn. 2022;22(06):2250075.

    Article  MathSciNet  Google Scholar 

  28. Sahmani S, Aghdam MM. Imperfection sensitivity of the size-dependent postbuckling response of pressurized FGM nanoshells in thermal environments. Archiv Civil Mech Eng. 2017;17(3):623–38.

    Article  Google Scholar 

  29. Yas MH, Rahimi S. Thermal buckling analysis of porous functionally graded nanocomposite beams reinforced by graphene platelets using Generalized differential quadrature method. Aerosp Sci Technol. 2020;107: 106261.

    Article  Google Scholar 

  30. Qian Q, Wang Y, Zhu F, Feng C, Yang J, Wang SG. Primary nonlinear damped natural frequency of dielectric composite beam reinforced with graphene platelets (GPLs). Archiv Civil Mech Eng. 2022;22:53.

    Article  Google Scholar 

  31. Song J, Karami B, Shahsavari D, Civalek Ö. Wave dispersion characteristics of graphene reinforced nanocomposite curved viscoelastic panels. Compos Struct. 2021;277: 114648.

    Article  CAS  Google Scholar 

  32. Demir Ç, Akgöz B, Erdinç MC, Mercan K, Civalek Ö. Free vibration analysis of graphene sheets on elastic matrix. J Fac Eng Archit Gaz. 2017;32(2):551–62.

    Google Scholar 

  33. Akgöz B, Civalek Ö. Free vibration analysis for single-layered graphene sheets in an elastic matrix via modified couple stress theory. Mater Design. 2021;42:164–71.

    Article  Google Scholar 

  34. Akgöz B, Civalek Ö. Static and dynamic response of sector-shaped graphene sheets. Mech Adv Mater Struct. 2016;23(4):432–42.

    Article  Google Scholar 

  35. She GL, Liu HB, Karami B. On resonance behavior of porous FG curved nanobeams. Steel Compos Struct. 2020;36(2):179–86.

    Google Scholar 

  36. She GL, Liu HB, Karami B. Resonance analysis of composite curved microbeams reinforced with graphene nanoplatelets. Thin Wall Struct. 2021;160: 107407.

    Article  Google Scholar 

  37. Ding HX, Zhang YW, She GL. On the resonance problems in FG-GPLRC beams with different boundary conditions resting on elastic foundations. Comput Concrete. 2022;30(6):433–43.

    Google Scholar 

  38. Zhang YW, Ding HX, She GL. Snap-buckling and resonance of functionally graded graphene reinforced composites curved beams resting on elastic foundations in thermal environment. J Therm Stresses. 2022;45(12):1029–42.

    Article  Google Scholar 

  39. Zhang YW, She GL. Nonlinear low-velocity impact response of graphene platelet-reinforced metal foam cylindrical shells under axial motion with geometrical imperfection. Nonlinear Dyn. 2023. https://doi.org/10.1007/s11071-022-08186-9.

    Article  PubMed  PubMed Central  Google Scholar 

  40. She GL, Ding HX. Nonlinear primary resonance analysis of initially stressed graphene platelet reinforced metal foams doubly curved shells with geometric imperfection. Acta Mech Sin. 2023;39: 522392.

    Article  MathSciNet  Google Scholar 

  41. Basha M, Daikh AA, Melaibari A, Wagih A, Othman R, Almitani KH, Hamed MA, Abdelrahman A, Eltaher MA. Nonlocal strain gradient theory for buckling and bending of FG-GRNC laminated sandwich plates. Steel Compos Struct. 2022;43(5):639–60.

    Google Scholar 

  42. Ghandourah EE, Daikh AA, Alhawsawi AM, Fallatah OA, Eltaher MA. Bending and buckling of FG-GRNC laminated plates via quasi-3D nonlocal strain gradient theory. Mathematics. 2022;10(8):1321.

    Article  Google Scholar 

  43. Karami B, Shahsavari D, Janghorban M, Tounsi A. Resonance behavior of functionally graded polymer composite nanoplates reinforced with graphene nanoplatelets. Int J Mech Sci. 2019;156:94–105.

    Article  Google Scholar 

  44. Al-Furjan MSH, Habibi M, Ghabussi A, Safarpour H, Safarpour M, Tounsi A. Non-polynomial framework for stress and strain response of the FG-GPLRC disk using three-dimensional refined higher-order theory. Eng Struct. 2021;228: 111496.

    Article  Google Scholar 

  45. Al-Furjan MSH, Safarpour H, Habibi M, Safarpour M, Tounsi A. A comprehensive computational approach for nonlinear thermal instability of the electrically FG-GPLRC disk based on GDQ method. Eng Comput. 2022;38:801–18.

    Article  Google Scholar 

  46. Gao WL, Qin ZY, Chu FL. Wave propagation in functionally graded porous plates reinforced with graphene platelets. Aerosp Sci Technol. 2020;102: 105860.

    Article  Google Scholar 

  47. Wang YQ, Ye C, Zu JW. Nonlinear vibration of metal foam cylindrical shells reinforced with graphene platelets. Aerosp Sci Technol. 2019;85:359–70.

    Article  Google Scholar 

  48. Ye C, Wang YQ. Nonlinear forced vibration of functionally graded graphene platelet-reinforced metal foam cylindrical shells: internal resonances. Nonlinear Dynam. 2021;104:2051–69.

    Article  Google Scholar 

  49. Li XQ, Song MT, Kitipornchai S. Primary and secondary resonances of functionally graded graphene platelet-reinforced nanocomposite beams. Nonlinear Dynam. 2019;95:1807–26.

    Article  Google Scholar 

  50. Zhou ZH, Ni YW, Xu XS. Accurate nonlinear buckling analysis of functionally graded porous graphene platelet reinforced composite cylindrical shells. Int J Mech Sci. 2019;151:537–50.

    Article  Google Scholar 

  51. Li ZC, Zheng JX. Analytical consideration and numerical verification of the confined functionally graded porous ring with graphene platelet reinforcement. Int J Mech Sci. 2019;161: 105079.

    Article  Google Scholar 

  52. Zhang YW, She GL, Ding HX. Nonlinear resonance of graphene platelets reinforced metal foams plates under axial motion with geometric imperfections. Eur J Mech A-Solid. 2023;98: 104887.

    Article  MathSciNet  Google Scholar 

  53. Jabbari M, Mojahedin A, Khorshidvand A, Eslami M. Buckling analysis of a functionally graded thin circular plate made of saturated porous materials. J Eng Mech. 2014;140:287–95.

    Article  Google Scholar 

  54. Arefi M, Civalek O. Static analysis of functionally graded composite shells on elastic foundations with nonlocal elasticity theory. Archiv Civ Mech Eng. 2020;20:22.

    Article  Google Scholar 

  55. Affdl JH, Kardos J. The Halpin-Tsai equations: a review. Polym Eng Sci. 1976;16:344–52.

    Article  Google Scholar 

  56. Li QY, Wu D, Gao W. Nonlinear vibration and dynamic buckling analyses of sandwich functionally graded porous plate with graphene platelet reinforcement resting on Winkler-Pasternak elastic foundation. Int J Mech Sci. 2018;148:596–610.

    Article  Google Scholar 

  57. Song MT, Li XQ, Yang J. Low-velocity impact response of geometrically nonlinear functionally graded graphene platelet-reinforced nanocomposite plates. Nonlinear Dynam. 2019;95:2333–52.

    Article  Google Scholar 

  58. Gibson I, Ashby MF. The mechanics of three-dimensional cellular materials. Proc R Soc Lond Ser A Math Phys Sci. 1982;382:43–59.

    CAS  ADS  Google Scholar 

  59. Arefi M, Mannani S, Collini L. Electro-magneto-mechanical formulation of a sandwich shell subjected to electro-magneto-mechanical considering thickness stretching. Archiv Civ Mech Eng. 2022;22:196.

    Article  Google Scholar 

  60. Eskandary K, Shishesaz M, Moradi S. Buckling analysis of composite conical shells reinforced by agglomerated functionally graded carbon nanotube. Archiv Civ Mech Eng. 2022;22:132.

    Article  Google Scholar 

  61. Faleh NM, Ahmed RA, Fenjan RM. On vibrations of porous FG nanoshells. Int J Eng Sci. 2018;133:1–14.

    Article  MathSciNet  Google Scholar 

  62. Chen SH, Cheung YK. A modified Lindstedt-Poincaré method for a strongly nonlinear system with quadratic and cubic nonlinearities. Shock Vib. 1996;3:279–85.

    Article  Google Scholar 

Download references

Funding

This paper has not received any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gui-Lin She.

Ethics declarations

Conflict of interest

All the authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors. This study was done according to ethical standards.

Informed consent

All the authors have been listed, and the authors have no objection for the authorship list.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

$$L_{11} = A_{11} \frac{{\partial^{2} u}}{{\partial x^{2} }} + A_{66} \frac{{\partial^{2} u}}{{\partial y^{2} }}$$
(34)
$$L_{12} = \left[ {A_{12} + A_{66} + \frac{1}{R}\left( {B_{12} + 2B_{66} } \right)} \right]\frac{{\partial^{2} v}}{\partial x\partial y}$$
(35)
$$\begin{gathered} L_{13} = \frac{{A_{12} }}{R}\frac{\partial w}{{\partial x}} - B_{11} \frac{{\partial^{3} w}}{{\partial x^{3} }} - \left( {B_{12} + 2B_{66} } \right)\frac{{\partial^{3} w}}{{\partial x\partial y^{2} }} \hfill \\ + A_{11} \left( {\frac{{\partial^{2} w}}{{\partial x^{2} }}\frac{{\partial w^{*} }}{\partial x} + \frac{\partial w}{{\partial x}}\frac{{\partial^{2} w^{*} }}{{\partial x^{2} }}} \right) + A_{12} \left( {\frac{{\partial^{2} w}}{\partial x\partial y}\frac{{\partial w^{*} }}{\partial y} + \frac{\partial w}{{\partial y}}\frac{{\partial^{2} w^{*} }}{\partial x\partial y}} \right) \hfill \\ + A_{66} \left( {\frac{{\partial^{2} w}}{\partial x\partial y}\frac{{\partial w^{*} }}{\partial y} + \frac{\partial w}{{\partial y}}\frac{{\partial^{2} w^{*} }}{\partial x\partial y} + \frac{{\partial^{2} w}}{{\partial y^{2} }}\frac{{\partial w^{*} }}{\partial x} + \frac{{\partial^{2} w^{*} }}{{\partial y^{2} }}\frac{\partial w}{{\partial x}}} \right) \hfill \\ \end{gathered}$$
(36)
$$P_{1} = A_{11} \frac{\partial w}{{\partial x}}\frac{{\partial^{2} w}}{{\partial x^{2} }} + A_{12} \frac{\partial w}{{\partial y}}\frac{{\partial^{2} w}}{\partial x\partial y} + A_{66} \left( {\frac{{\partial^{2} w}}{{\partial y^{2} }}\frac{\partial w}{{\partial x}} + \frac{{\partial^{2} w}}{\partial x\partial y}\frac{\partial w}{{\partial y}}} \right)$$
(37)
$$L_{21} = \left[ {A_{66} + A_{12} + \frac{1}{R}\left( {2B_{66} + B_{12} } \right)} \right]\frac{{\partial^{2} u}}{\partial x\partial y}$$
(38)
$$L_{22} = \left[ {A_{66} + \frac{1}{R}\left( {4B_{66} + \frac{4}{R}D_{66} } \right)} \right]\frac{{\partial^{2} v}}{{\partial x^{2} }} + \left[ {A_{22} + \frac{1}{R}\left( {2B_{22} + \frac{1}{R}D_{22} } \right)} \right]\frac{{\partial^{2} v}}{{\partial y^{2} }}$$
(39)
$$\begin{gathered} L_{23} = - \left[ {2B_{66} + B_{12} + \frac{1}{R}\left( {4D_{66} + D_{12} } \right)} \right]\frac{{\partial^{3} w}}{{\partial x^{2} \partial y}} + \frac{1}{R}\left( {A_{22} + \frac{{B_{22} }}{R}} \right)\frac{\partial w}{{\partial y}} - \left( {B_{22} + \frac{1}{R}D_{22} } \right)\frac{{\partial^{3} w}}{{\partial y^{3} }} \hfill \\ + \left( {A_{66} + \frac{{B_{66} }}{R}} \right)\left( {\frac{{\partial^{2} w^{*} }}{{\partial x^{2} }}\frac{\partial w}{{\partial y}} + \frac{{\partial w^{*} }}{\partial x}\frac{{\partial^{2} w}}{\partial x\partial y} + \frac{\partial w}{{\partial x}}\frac{{\partial^{2} w^{*} }}{\partial x\partial y} + \frac{{\partial w^{*} }}{\partial y}\frac{{\partial^{2} w}}{{\partial x^{2} }}} \right) \hfill \\ + \left( {A_{12} + \frac{{B_{12} }}{R}} \right)\left( {\frac{{\partial^{2} w}}{\partial x\partial y}\frac{{\partial w^{*} }}{\partial x} + \frac{\partial w}{{\partial x}}\frac{{\partial^{2} w^{*} }}{\partial x\partial y}} \right) + \left( {A_{22} + \frac{{B_{22} }}{R}} \right)\left( {\frac{{\partial^{2} w}}{{\partial y^{2} }}\frac{{\partial w^{*} }}{\partial y} + \frac{\partial w}{{\partial y}}\frac{{\partial^{2} w^{*} }}{{\partial y^{2} }}} \right) \hfill \\ \end{gathered}$$
(40)
$$P_{2} = \left( {A_{66} + 2\frac{{B_{66} }}{R}} \right)\left( {\frac{{\partial^{2} w}}{{\partial x^{2} }}\frac{\partial w}{{\partial y}} + \frac{\partial w}{{\partial x}}\frac{{\partial^{2} w}}{\partial x\partial y}} \right) + \left( {A_{12} + \frac{{B_{12} }}{R}} \right)\frac{{\partial^{2} w}}{\partial x\partial y}\frac{\partial w}{{\partial x}} + \left( {A_{22} + \frac{{B_{22} }}{R}} \right)\frac{{\partial^{2} w}}{{\partial y^{2} }}\frac{\partial w}{{\partial y}}$$
(41)
$$L_{31} = B_{11} \frac{{\partial^{3} u}}{{\partial x^{3} }} + \left( {2B_{66} + B_{12} } \right)\frac{{\partial^{3} u}}{{\partial x\partial y^{2} }} - \frac{{A_{12} }}{R}\frac{\partial u}{{\partial x}}$$
(42)
$$L_{32} = \left[ {B_{12} + 2B_{66} + \frac{1}{R}\left( {4D_{66} + D_{12} } \right)} \right]\frac{{\partial^{3} v}}{{\partial x^{2} \partial y}} + \left( {B_{22} + \frac{{D_{22} }}{R}} \right)\frac{{\partial^{3} v}}{{\partial y^{3} }} - \left( {\frac{{A_{22} }}{R} + \frac{{B_{22} }}{{R^{2} }}} \right)\frac{\partial v}{{\partial y}}$$
(43)
$$\begin{gathered} L_{33} = \frac{{2B_{12} }}{R}\frac{{\partial^{2} w}}{{\partial x^{2} }} + \frac{{2B_{22} }}{R}\frac{{\partial^{2} w}}{{\partial y^{2} }} - D_{11} \frac{{\partial^{4} w}}{{\partial x^{4} }} - D_{22} \frac{{\partial^{4} w}}{{\partial y^{4} }} - (2D_{12} + 4D_{66} )\frac{{\partial^{4} w}}{{\partial x^{2} \partial y^{2} }} - \frac{{A_{22} }}{{R^{2} }}w \hfill \\ + B_{11} \left( {\frac{{\partial^{3} w}}{{\partial x^{3} }}\frac{{\partial w^{*} }}{\partial x} + 2\frac{{\partial^{2} w}}{{\partial x^{2} }}\frac{{\partial^{2} w^{*} }}{{\partial x^{2} }} + \frac{{\partial^{3} w^{*} }}{{\partial x^{3} }}\frac{\partial w}{{\partial x}}} \right) + B_{12} \left( {\frac{{\partial^{3} w}}{{\partial x^{2} \partial y}}\frac{{\partial w^{*} }}{\partial y} + 2\frac{{\partial^{2} w}}{\partial x\partial y}\frac{{\partial^{2} w^{*} }}{\partial x\partial y} + \frac{\partial w}{{\partial y}}\frac{{\partial^{3} w^{*} }}{{\partial x^{2} \partial y}}} \right) \hfill \\ + 2B_{66} \left( \begin{gathered} \frac{\partial w}{{\partial y}}\frac{{\partial^{3} w^{*} }}{{\partial x^{2} \partial y}} + \frac{{\partial^{2} w^{*} }}{{\partial x^{2} }}\frac{{\partial^{2} w}}{{\partial y^{2} }} + 2\frac{{\partial^{2} w}}{\partial x\partial y}\frac{{\partial^{2} w^{*} }}{\partial x\partial y} \hfill \\ + \frac{{\partial^{3} w}}{{\partial x\partial y^{2} }}\frac{{\partial w^{*} }}{\partial x} + \frac{{\partial^{2} w}}{{\partial x^{2} }}\frac{{\partial^{2} w^{*} }}{{\partial y^{2} }} + \frac{{\partial w^{*} }}{\partial y}\frac{{\partial^{3} w}}{{\partial x^{2} \partial y}} + \frac{{\partial^{3} w^{*} }}{{\partial x\partial y^{2} }}\frac{\partial w}{{\partial x}} \hfill \\ \end{gathered} \right) \hfill \\ + B_{12} \left( {\frac{{\partial^{3} w}}{{\partial x\partial y^{2} }}\frac{\partial w}{{\partial x}} + 2\frac{{\partial^{2} w}}{\partial x\partial y}\frac{{\partial^{2} w^{*} }}{\partial x\partial y} + \frac{\partial w}{{\partial x}}\frac{{\partial^{3} w^{*} }}{{\partial x\partial y^{2} }}} \right) \hfill \\ + B_{22} \left( {\frac{{\partial^{3} w}}{{\partial y^{3} }}\frac{{\partial w^{*} }}{\partial y} + 2\frac{{\partial^{2} w}}{{\partial y^{2} }}\frac{{\partial^{2} w^{*} }}{{\partial y^{2} }} + \frac{{\partial^{3} w^{*} }}{{\partial y^{3} }}\frac{\partial w}{{\partial y}}} \right) - \frac{{A_{12} }}{R}\frac{\partial w}{{\partial x}}\frac{{\partial w^{*} }}{\partial x} - \frac{{A_{22} }}{R}\frac{\partial w}{{\partial y}}\frac{{\partial w^{*} }}{\partial y} \hfill \\ \end{gathered}$$
(44)
$$\begin{gathered} P_{3} = B_{11} \left( {\frac{{\partial^{3} w}}{{\partial x^{3} }}\frac{\partial w}{{\partial x}} + \frac{{\partial^{2} w}}{{\partial x^{2} }}\frac{{\partial^{2} w}}{{\partial x^{2} }}} \right) + B_{12} \left( {\frac{{\partial^{3} w}}{{\partial x^{2} \partial y}}\frac{\partial w}{{\partial y}} + \frac{{\partial^{2} w}}{\partial x\partial y}\frac{{\partial^{2} w}}{\partial x\partial y}} \right) + A_{22} \frac{\partial w}{{\partial y}}\frac{{\partial w^{*} }}{\partial y}\frac{{\partial^{2} w}}{{\partial y^{2} }} \hfill \\ + 2B_{66} \left( {\frac{{\partial^{3} w}}{{\partial x^{2} \partial y}}\frac{\partial w}{{\partial y}} + \frac{{\partial^{2} w}}{{\partial x^{2} }}\frac{{\partial^{2} w}}{{\partial y^{2} }} + \frac{{\partial^{2} w}}{\partial x\partial y}\frac{{\partial^{2} w}}{\partial x\partial y} + \frac{\partial w}{{\partial x}}\frac{{\partial^{3} w}}{{\partial x\partial y^{2} }}} \right) + B_{12} \left( {\frac{{\partial^{3} w}}{{\partial x\partial y^{2} }}\frac{\partial w}{{\partial x}} + \frac{{\partial^{2} w}}{\partial x\partial y}\frac{{\partial^{2} w}}{\partial x\partial y}} \right) \hfill \\ + B_{22} \left( {\frac{{\partial^{3} w}}{{\partial y^{3} }}\frac{\partial w}{{\partial y}} + \frac{{\partial^{2} w}}{{\partial y^{2} }}\frac{{\partial^{2} w}}{{\partial y^{2} }}} \right) - \frac{{A_{12} }}{2R}\left( {\frac{\partial w}{{\partial x}}} \right)^{2} - \frac{{A_{22} }}{2R}\left( {\frac{\partial w}{{\partial y}}} \right)^{2} + \frac{{A_{12} }}{R}w\frac{{\partial^{2} w}}{{\partial x^{2} }} - B_{11} \left( {\frac{{\partial^{2} w}}{{\partial x^{2} }}} \right)^{2} \hfill \\ - 2B_{12} \frac{{\partial^{2} w}}{{\partial x^{2} }}\frac{{\partial^{2} w}}{{\partial y^{2} }} - 4B_{66} \left( {\frac{{\partial^{2} w}}{\partial x\partial y}} \right)^{2} + \frac{{A_{22} }}{R}w\frac{{\partial^{2} w}}{{\partial y^{2} }} - B_{22} \left( {\frac{{\partial^{2} w}}{{\partial y^{2} }}} \right)^{2} + A_{11} \frac{\partial w}{{\partial x}}\frac{{\partial w^{*} }}{\partial x}\frac{{\partial^{2} w}}{{\partial x^{2} }} \hfill \\ + A_{12} \frac{\partial w}{{\partial y}}\frac{{\partial w^{*} }}{\partial y}\frac{{\partial^{2} w}}{{\partial x^{2} }} + 2A_{66} \left( {\frac{{\partial w^{2} }}{\partial x\partial y}\frac{{\partial w^{*} }}{\partial x}\frac{\partial w}{{\partial y}} + \frac{{\partial w^{2} }}{\partial x\partial y}\frac{\partial w}{{\partial x}}\frac{{\partial w^{*} }}{\partial y}} \right) + A_{12} \frac{\partial w}{{\partial x}}\frac{{\partial w^{*} }}{\partial x}\frac{{\partial^{2} w}}{{\partial y^{2} }} \hfill \\ \end{gathered}$$
(45)
$$\begin{gathered} P_{4} = \frac{1}{2}A_{11} \left( {\frac{\partial w}{{\partial x}}} \right)^{2} \frac{{\partial^{2} w}}{{\partial x^{2} }} + \frac{1}{2}A_{12} \left( {\frac{\partial w}{{\partial y}}} \right)^{2} \frac{{\partial^{2} w}}{{\partial x^{2} }} + 2A_{66} \frac{{\partial^{2} w}}{\partial x\partial y}\frac{\partial w}{{\partial x}}\frac{\partial w}{{\partial y}} \hfill \\ + \frac{1}{2}A_{12} \left( {\frac{\partial w}{{\partial x}}} \right)^{2} \frac{{\partial^{2} w}}{{\partial y^{2} }} + \frac{1}{2}A_{12} \left( {\frac{\partial w}{{\partial y}}} \right)^{2} \frac{{\partial^{2} w}}{{\partial y^{2} }} \hfill \\ \end{gathered}$$
(46)
$$Q_{3} = A_{11} \frac{\partial u}{{\partial x}}\frac{{\partial^{2} w}}{{\partial x^{2} }} + 2A_{66} \frac{{\partial^{2} w}}{\partial x\partial y}\frac{\partial u}{{\partial y}} + A_{12} \frac{{\partial^{2} w}}{{\partial y^{2} }}\frac{\partial u}{{\partial x}}$$
(47)
$$R_{3} = \left( {A_{12} + \frac{{B_{12} }}{R}} \right)\frac{\partial v}{{\partial y}}\frac{{\partial^{2} w}}{{\partial x^{2} }} + \left( {2A_{66} + \frac{{4A_{66} }}{R}} \right)\frac{{\partial^{2} w}}{\partial x\partial y}\frac{\partial v}{{\partial x}} + \left( {A_{22} + \frac{{B_{22} }}{R}} \right)\frac{{\partial^{2} w}}{{\partial y^{2} }}\frac{\partial v}{{\partial y}}$$
(48)

These symbols appeared in Eqs. (34)–(48) are defined as

$$\left\{ \begin{gathered} A_{ii} = \int_{{ - \frac{h}{2}}}^{\frac{h}{2}} {Q_{ii} (z)dz} ,\;\; \hfill \\ B_{ii} = \int_{{ - \frac{h}{2}}}^{\frac{h}{2}} {z \cdot Q_{ii} (z)dz} ,\;\; \hfill \\ D_{ii} = \int_{{ - \frac{h}{2}}}^{\frac{h}{2}} {z^{2} \cdot Q_{ii} (z)dz} \hfill \\ \end{gathered} \right.\;ij = (11,12,22,66)$$
(49)

Appendix B

For SSSS:

$$\begin{gathered} l_{11} = - \frac{{{\mkern 1mu} \left( {A_{66} {\mkern 1mu} L^{2} {\mkern 1mu} n^{2} + A_{11} {\mkern 1mu} \pi^{2} {\mkern 1mu} R^{2} {\mkern 1mu} m^{2} } \right)}}{{{\mkern 1mu} L^{2} {\mkern 1mu} R^{2} {\mkern 1mu} }}, \hfill \\ l_{12} = \frac{{{\mkern 1mu} \pi mn\left( {B_{12} + 2{\mkern 1mu} B_{66} + A_{12} {\mkern 1mu} R + A_{66} {\mkern 1mu} R} \right)}}{{{\mkern 1mu} L{\mkern 1mu} R^{2} {\mkern 1mu} }}, \hfill \\ l_{13} = \frac{{\pi {\mkern 1mu} m\left( {B_{12} {\mkern 1mu} L^{2} {\mkern 1mu} n^{2} + 2{\mkern 1mu} B_{66} {\mkern 1mu} L^{2} {\mkern 1mu} n^{2} + A_{12} {\mkern 1mu} L^{2} {\mkern 1mu} R + B_{11} {\mkern 1mu} R^{2} {\mkern 1mu} m^{2} {\mkern 1mu} \pi^{2} } \right)}}{{L^{3} {\mkern 1mu} R^{2} {\mkern 1mu} }}; \hfill \\ \end{gathered}$$
(50)
$$\begin{gathered} l_{21} = \frac{{\pi mn\left( {B_{12} + 2{\mkern 1mu} B_{66} + A_{12} {\mkern 1mu} R + A_{66} {\mkern 1mu} R} \right)}}{{L{\mkern 1mu} R^{2} {\mkern 1mu} }}, \hfill \\ l_{22} = - \frac{{\left( {A_{22} {\mkern 1mu} L^{2} {\mkern 1mu} R^{2} {\mkern 1mu} n^{2} + 2{\mkern 1mu} B_{22} {\mkern 1mu} L^{2} {\mkern 1mu} R{\mkern 1mu} n^{2} + D_{22} {\mkern 1mu} L^{2} {\mkern 1mu} n^{2} + A_{66} {\mkern 1mu} \pi^{2} {\mkern 1mu} R^{4} {\mkern 1mu} m^{2} + 4{\mkern 1mu} B_{66} {\mkern 1mu} \pi^{2} {\mkern 1mu} R^{3} {\mkern 1mu} m^{2} + 4{\mkern 1mu} D_{66} {\mkern 1mu} \pi^{2} {\mkern 1mu} R^{2} {\mkern 1mu} m^{2} } \right)}}{{L^{2} {\mkern 1mu} R^{4} }}, \hfill \\ l_{23} = - \frac{{n\left( \begin{gathered} D_{22} L^{2} n^{2} + B_{22} L^{2} R + A_{22} L^{2} R^{2} + B_{22} L^{2} Rn^{2} + B_{12} R^{3} m^{2} \pi^{2} \hfill \\ + 2B_{66} R^{3} m^{2} \pi^{2} + D_{12} R^{3} m^{2} \pi^{2} + 4D_{66} R^{2} m^{2} \pi^{2} \hfill \\ \end{gathered} \right)}}{{L^{2} R^{4} }}; \hfill \\ \end{gathered}$$
(51)
$$\begin{gathered} l_{31} = \frac{{\pi {\mkern 1mu} m\left( {B_{12} {\mkern 1mu} L^{2} {\mkern 1mu} n^{2} + 2{\mkern 1mu} B_{66} {\mkern 1mu} L^{2} {\mkern 1mu} n^{2} + A_{12} {\mkern 1mu} L^{2} {\mkern 1mu} R + B_{11} {\mkern 1mu} R^{2} {\mkern 1mu} m^{2} {\mkern 1mu} \pi^{2} } \right)}}{{L^{3} {\mkern 1mu} R^{2} {\mkern 1mu} }}, \hfill \\ l_{32} = - \frac{{n\left( \begin{gathered} D_{22} L^{2} n^{2} + B_{22} L^{2} R + A_{22} L^{2} R^{2} + B_{22} L^{2} Rn^{2} + B_{12} R^{3} m^{2} \pi^{2} \hfill \\ + 2B_{66} R^{3} m^{2} \pi^{2} + D_{12} R^{3} m^{2} \pi^{2} + 4D_{66} R^{2} m^{2} \pi^{2} \hfill \\ \end{gathered} \right)}}{{L^{2} R^{4} }}, \hfill \\ l_{33} = - \frac{{\left( \begin{gathered} D_{22} L^{4} n^{4} + A_{22} L^{4} R^{2} + 2B_{22} L^{4} Rn^{2} + D_{11} R^{4} m^{4} \pi^{4} + 2B_{12} L^{2} R^{3} m^{2} \pi^{2} \hfill \\ + L^{2} R^{4} m^{2} \pi^{2} ph - I_{0} L^{2} R^{4} V^{2} m^{2} \pi^{2} + 4D_{66} L^{2} R^{2} m^{2} n^{2} \pi^{2} \hfill \\ \end{gathered} \right)}}{{L^{4} R^{4} }}, \hfill \\ p_{3} = - \frac{{3A_{22} W_{1} n^{4} }}{{16R^{4} }} - \frac{{3A_{11} W_{1} m^{4} \pi^{4} }}{{16L^{4} }} - \frac{{\pi A_{12} W_{1} m^{2} }}{{16L^{2} R}} - \frac{{3A_{12} W_{1} m^{2} n^{2} \pi^{2} }}{{16L^{2} R^{2} }} + \frac{{A_{66} W_{1} m^{2} n^{2} \pi^{2} }}{{4L^{2} R^{2} }}, \hfill \\ p_{4} = \frac{{ - 96A_{22} L^{4} mn^{5} \pi^{2} - 96A_{11} R^{4} m^{5} n\pi^{6} - 192A_{12} L^{2} R^{2} m^{3} n^{3} \pi^{4} + 128A_{66} L^{2} R^{2} m^{3} n^{3} \pi^{4} }}{{1024L^{4} R^{4} mn\pi^{2} }}, \hfill \\ p_{1} = p_{2} = n_{1} = n_{2} = 0. \hfill \\ \end{gathered}$$
(52)

For CCSS:

$$\begin{gathered} l_{11} = - \frac{{{\mkern 1mu} \left( {A_{66} {\mkern 1mu} L^{2} {\mkern 1mu} n^{2} + 4{\mkern 1mu} A_{11} {\mkern 1mu} \pi^{2} {\mkern 1mu} R^{2} {\mkern 1mu} m^{2} } \right)}}{{{\mkern 1mu} L^{2} {\mkern 1mu} R^{2} {\mkern 1mu} }}, \hfill \\ l_{12} = - \frac{{2\pi {\mkern 1mu} mn\left( {B_{12} + 2{\mkern 1mu} B_{66} + A_{12} {\mkern 1mu} R + A_{66} {\mkern 1mu} R} \right)}}{{{\mkern 1mu} L{\mkern 1mu} R^{2} {\mkern 1mu} }}, \hfill \\ l_{13} = \frac{{2mn\pi^{2} \left( {B_{12} L^{2} n^{2} + 2B_{66} L^{2} n^{2} + A_{12} L^{2} R + 4B_{11} R^{2} m^{2} \pi^{2} } \right)}}{{8L^{3} R^{2} n\pi }}; \hfill \\ \end{gathered}$$
(53)
$$\begin{gathered} l_{21} = - \frac{{2\pi {\mkern 1mu} mn\left( {B_{12} + 2{\mkern 1mu} B_{66} + A_{12} {\mkern 1mu} R + A_{66} {\mkern 1mu} R} \right)}}{{{\mkern 1mu} L{\mkern 1mu} R^{2} {\mkern 1mu} }}, \hfill \\ l_{22} = - \frac{{6B_{22} n^{2} }}{{R^{3} }} - \frac{{3D_{22} n^{2} }}{{R^{4} }} - \frac{{4A_{66} m^{2} \pi^{2} }}{{L^{2} }} - \frac{{3A_{22} n^{2} }}{{R^{2} }} - \frac{{16B_{66} m^{2} \pi^{2} }}{{L^{2} R}} - \frac{{16D_{66} m^{2} \pi^{2} }}{{L^{2} R^{2} }}, \hfill \\ l_{23} = \frac{{A_{22} n}}{{R^{2} }} + \frac{{B_{22} n^{3} }}{{R^{3} }} + \frac{{3B_{22} n^{3} }}{{R^{3} }} + \frac{{3D_{22} n^{3} }}{{R^{4} }} + \frac{{16D_{66} m^{2} n\pi^{2} }}{{L^{2} R^{2} }} + \frac{{4D_{12} m^{2} n\pi^{2} }}{{L^{2} R}} \hfill \\ \;\;\;\;\;\; + \frac{{8B_{66} m^{2} n\pi^{2} }}{{L^{2} R}} + \frac{{8B_{12} m^{2} n\pi^{2} }}{{L^{2} R}}; \hfill \\ \end{gathered}$$
(54)
$$\begin{gathered} l_{31} = \frac{{2mn\pi^{2} \left( {B_{12} L^{2} n^{2} + 2B_{66} L^{2} n^{2} + A_{12} L^{2} R + 4B_{11} R^{2} m^{2} \pi^{2} } \right)}}{{8L^{3} R^{2} n\pi }}, \hfill \\ l_{32} = \frac{{A_{22} n}}{{R^{2} }} + \frac{{B_{22} n^{3} }}{{R^{3} }} + \frac{{3B_{22} n^{3} }}{{R^{3} }} + \frac{{3D_{22} n^{3} }}{{R^{4} }} + \frac{{16D_{66} m^{2} n\pi^{2} }}{{L^{2} R^{2} }} + \frac{{4D_{12} m^{2} n\pi^{2} }}{{L^{2} R}} + \frac{{8B_{66} m^{2} n\pi^{2} }}{{L^{2} R}} + \frac{{8B_{12} m^{2} n\pi^{2} }}{{L^{2} R}}, \hfill \\ l_{33} = \frac{{2n^{2} B_{22} }}{{R^{3} }} - \frac{{16D_{11} m^{4} \pi^{4} }}{{L^{4} }} - \frac{{4m^{2} \pi^{2} ph}}{{L^{2} }} + \frac{{A_{22} }}{{R^{2} }} + \frac{{D_{22} n^{4} }}{{R^{4} }} - \frac{{8B_{12} m^{2} \pi^{2} }}{{L^{2} R}} + \frac{{4I_{0} V^{2} m^{2} \pi^{2} }}{{L^{2} }} \hfill \\ \;\;\;\;\;\; - \frac{{16D_{22} m^{2} n^{2} \pi^{2} }}{{L^{2} R^{2} }} - \frac{{8D_{12} m^{2} n^{2} \pi^{2} }}{{L^{2} R^{2} }}, \hfill \\ p_{3} = \frac{{ - 60\pi B_{22} L^{4} mn^{4} + 30\pi A_{22} L^{4} Rmn^{2} + 96B_{12} L^{2} R^{2} m^{3} n^{2} \pi^{3} - 96B_{66} L^{2} R^{2} m^{3} n^{2} \pi^{3} }}{{36L^{4} R^{4} mn\pi^{2} }} \hfill \\ \;\;\;\;\;\; - \frac{{16\pi B_{66} m^{2} n}}{{3L^{2} R^{2} }} - \frac{{10B_{22} n^{3} }}{{3R^{4} \pi }} - \frac{{32B_{11} m^{4} \pi^{3} }}{{3L^{4} n}} - \frac{{10A_{22} n}}{{3R^{3} \pi }} - \frac{{32\pi B_{12} m^{2} n}}{{3L^{2} R^{2} }} - \frac{{16\pi A_{12} m^{2} }}{{3L^{2} Rn}} \hfill \\ \;\;\;\;\; + \frac{{5\pi A_{12} W_{1} m^{2} }}{{16L^{2} R}} - \frac{{3A_{11} W_{1} m^{4} \pi^{4} }}{{L^{4} }} - \frac{{35A_{22} W_{1} n^{4} }}{{16R^{4} }} - \frac{{15A_{12} W_{1} m^{2} n^{2} \pi^{2} }}{{4L^{2} R^{2} }} + \frac{{5A_{66} W_{1} m^{2} n^{2} \pi^{2} }}{{L^{2} R^{2} }}, \hfill \\ p_{4} = - \frac{{35A_{22} n^{4} }}{{32R^{4} }} + \frac{{3A_{11} m^{4} \pi^{4} }}{{2L^{4} }} - \frac{{13A_{12} m^{2} n^{2} \pi^{2} }}{{4L^{2} R^{2} }} + \frac{{5A_{66} m^{2} n^{2} \pi^{2} }}{{2L^{2} R^{2} }}, \hfill \\ p_{1} = p_{2} = n_{1} = n_{2} = 0. \hfill \\ \end{gathered}$$
(55)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, HX., She, GL. Nonlinear resonance of axially moving graphene platelet-reinforced metal foam cylindrical shells with geometric imperfection. Archiv.Civ.Mech.Eng 23, 97 (2023). https://doi.org/10.1007/s43452-023-00634-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43452-023-00634-6

Keywords

Navigation