Skip to main content
Log in

Nonlinear forced vibration of functionally graded graphene platelet-reinforced metal foam cylindrical shells: internal resonances

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In the present study, we analyze the nonlinear forced vibration of thin-walled metal foam cylindrical shells reinforced with functionally graded graphene platelets. Attention is focused on the 1:1:1:2 internal resonances, which is detected to exist in this novel nanocomposite structure. Three kinds of porosity distribution and different kinds of graphene platelet distribution are considered. The equations of motion and the compatibility equation are deduced according to the Donnell’s nonlinear shell theory. The stress function is introduced, and then, the four-degree-of-freedom nonlinear ordinary differential equations (ODEs) are obtained via the Galerkin method. The numerical analysis of nonlinear forced vibration responses is presented by using the pseudo-arclength continuation technique. The present results are validated by comparison with those in existing literature for special cases. Results demonstrate that the amplitude–frequency relations of the system are very complex due to the 1:1:1:2 internal resonances. Porosity distribution and graphene platelet (GPL) distribution influence obviously the nonlinear behavior of the shells. We also found that the inclusion of graphene platelets in the shells weakens the nonlinear coupling effect. Moreover, the effects of the porosity coefficient and GPL weight fraction on the nonlinear dynamical response are strongly related to the porosity distribution as well as graphene platelet distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of data and material

The data that support the findings of this study are available from the corresponding author, Yan Qing Wang, upon reasonable request.

Code availability

The raw/processed code required to reproduce these findings cannot be shared at this time as the code also forms part of an ongoing study.

References

  1. Xie, Z., Ikeda, T., Okuda, Y., Nakajima, H.: Sound absorption characteristics of lotus-type porous copper fabricated by unidirectional solidification. Mater. Sci. Eng. A. 386, 390–395 (2004). https://doi.org/10.1016/j.msea.2004.07.058

    Article  Google Scholar 

  2. Banhart, J.: Manufacture, characterisation and application of cellular metals and metal foams. Prog. Mater. Sci. 46, 559–632 (2001). https://doi.org/10.1016/S0079-6425(00)00002-5

    Article  Google Scholar 

  3. Magnucka-Blandzi, E., Magnucki, K.: Effective design of a sandwich beam with a metal foam core. Thin-Walled Struct. 45, 432–438 (2007). https://doi.org/10.1016/j.tws.2007.03.005

    Article  Google Scholar 

  4. Ramamurty, U., Paul, A.: Variability in mechanical properties of a metal foam. Acta Mater. 52, 869–876 (2004). https://doi.org/10.1016/j.actamat.2003.10.021

    Article  Google Scholar 

  5. Debowski, D., Magnucki Malinowski, K.M., Wu, D.: Dynamic stability of a metal foam rectangular plate. Steel Compos. Struct. 10, 151–168 (2010). https://doi.org/10.12989/scs.2010.10.2.151

    Article  Google Scholar 

  6. Gao, K., Gao, W., Wu, B., Wu, D., Song, C.: Nonlinear primary resonance of functionally graded porous cylindrical shells using the method of multiple scales. Thin-Walled Struct. 125, 281–293 (2018). https://doi.org/10.1016/j.tws.2017.12.039

    Article  Google Scholar 

  7. Wang, Y.Q., Ye, C., Zu, J.W.: Vibration analysis of circular cylindrical shells made of metal foams under various boundary conditions. Int. J. Mech. Mater. Des. 15, 333–344 (2019). https://doi.org/10.1007/s10999-018-9415-8

    Article  Google Scholar 

  8. Zegeye, E., Ghamsari, A.K., Woldesenbet, E.: Mechanical properties of graphene platelets reinforced syntactic foams. Compos. Part B Eng. 60, 268–273 (2014). https://doi.org/10.1016/j.compositesb.2013.12.040

    Article  Google Scholar 

  9. Rashad, M., Pan, F.S., Tang, A.T., Asif, M., She, J., Gou, J., Mao, J.J., Hu, H.H.: Development of magnesium-graphene nanoplatelets composite. J. Compos. Mater. 49, 285–293 (2015). https://doi.org/10.1177/0021998313518360

    Article  Google Scholar 

  10. Zaman, I., Kuan, H.C., Dai, J.F., Kawashima, N., Michelmore, A., Sovi, A., Dong, S.Y., Luong, L., Ma, J.: From carbon nanotubes and silicate layers to graphene platelets for polymer nanocomposites. Nanoscale 4, 4578–4586 (2012). https://doi.org/10.1039/c2nr30837a

    Article  Google Scholar 

  11. Rafiee, M.A., Rafiee, J., Wang, Z., Song, H., Yu, Z.Z., Koratkar, N.: Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano 3, 3884–3890 (2009). https://doi.org/10.1021/nn9010472

    Article  Google Scholar 

  12. Yavari, F., Fard, H.R., Pashayi, K., Rafiee, M.A., Zamiri, A., Yu, Z., Ozisik, R., Borca-Tasciuc, T., Koratkar, N.: Enhanced thermal conductivity in a nanostructured phase change composite due to low concentration graphene additives. J. Phys. Chem. C. 115, 8753–8758 (2011). https://doi.org/10.1021/jp200838s

    Article  Google Scholar 

  13. Antenucci, A., Guarino, S., Tagliaferri, V., Ucciardello, N.: Electro-deposition of graphene on aluminium open cell metal foams. Mater. Des. 71, 78–84 (2015). https://doi.org/10.1016/j.matdes.2015.01.004

    Article  Google Scholar 

  14. Tjong, S.C.: Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets. Mater. Sci. Eng. R Rep. 74, 281–350 (2013). https://doi.org/10.1016/j.mser.2013.08.001

    Article  Google Scholar 

  15. Duarte, I., Ferreira, J.M.: Composite and nanocomposite metal foams. Materials. 9, 79 (2016). https://doi.org/10.3390/ma9020079

    Article  Google Scholar 

  16. Kitipornchai, S., Chen, D., Yang, J.: Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets. Mater. Des. 116, 656–665 (2017). https://doi.org/10.1016/j.matdes.2016.12.061

    Article  Google Scholar 

  17. Zhao, S., Zhao, Z., Yang, Z., Ke, L., Kitipornchai, S., Yang, J.: Functionally graded graphene reinforced composite structures: A review. Eng. Struct. 210, 110339 (2020). https://doi.org/10.1016/j.engstruct.2020.110339

    Article  Google Scholar 

  18. Banhart, J., Seeliger, H.-W.: Aluminium foam sandwich panels: manufacture, metallurgy and applications. Adv. Eng. Mater. 10, 793–802 (2008). https://doi.org/10.1002/adem.200800091

    Article  Google Scholar 

  19. Yang, J., Chen, D., Kitipornchai, S.: Buckling and free vibration analyses of functionally graded graphene reinforced porous nanocomposite plates based on Chebyshev-Ritz method. Compos. Struct. 193, 281–294 (2018). https://doi.org/10.1016/J.COMPSTRUCT.2018.03.090

    Article  Google Scholar 

  20. Dong, Y.H., Li, Y.H., Chen, D., Yang, J.: Vibration characteristics of functionally graded graphene reinforced porous nanocomposite cylindrical shells with spinning motion. Compos. Part B Eng. 145, 1–13 (2018). https://doi.org/10.1016/j.compositesb.2018.03.009

    Article  Google Scholar 

  21. Chen, D., Yang, J., Kitipornchai, S.: Nonlinear vibration and postbuckling of functionally graded graphene reinforced porous nanocomposite beams. Compos. Sci. Technol. 142, 235–245 (2017). https://doi.org/10.1016/j.compscitech.2017.02.008

    Article  Google Scholar 

  22. Gao, K., Gao, W., Chen, D., Yang, J.: Nonlinear free vibration of functionally graded graphene platelets reinforced porous nanocomposite plates resting on elastic foundation. Compos. Struct. 204, 831–846 (2018). https://doi.org/10.1016/j.compstruct.2018.08.013

    Article  Google Scholar 

  23. Barati, M.R., Zenkour, A.M.: Post-buckling analysis of refined shear deformable graphene platelet reinforced beams with porosities and geometrical imperfection. Compos. Struct. 181, 194–202 (2017). https://doi.org/10.1016/j.compstruct.2017.08.082

    Article  Google Scholar 

  24. Wang, Y.Q., Ye, C., Zu, J.W.: Nonlinear vibration of metal foam cylindrical shells reinforced with graphene platelets. Aerosp. Sci. Technol. 85, 359–370 (2019). https://doi.org/10.1016/j.ast.2018.12.022

    Article  Google Scholar 

  25. Chen, J., Zhang, W., Sun, M., Yao, M., Liu, J.: Parametric study on nonlinear vibration of composite truss core sandwich plate with internal resonance. J. Mech. Sci. Technol. 30, 4133–4142 (2016). https://doi.org/10.1007/s12206-016-0825-y

    Article  Google Scholar 

  26. Shaw, A.D., Hill, T.L., Neild, S.A., Friswell, M.I.: Periodic responses of a structure with 3:1 internal resonance. Mech. Syst. Signal Process. 81, 19–34 (2016). https://doi.org/10.1016/j.ymssp.2016.03.008

    Article  Google Scholar 

  27. Tang, Y.Q., Zhang, D.B., Gao, J.M.: Parametric and internal resonance of axially accelerating viscoelastic beams with the recognition of longitudinally varying tensions. Nonlinear Dyn. 83, 401–418 (2016). https://doi.org/10.1007/s11071-015-2336-2

    Article  MathSciNet  MATH  Google Scholar 

  28. Yi, Z., Stanciulescu, I.: Nonlinear normal modes of a shallow arch with elastic constraints for two-to-one internal resonances. Nonlinear Dyn. 83, 1577–1600 (2016). https://doi.org/10.1007/s11071-015-2432-3

    Article  MathSciNet  MATH  Google Scholar 

  29. Wang, Y.Q., Yang, Z.: Nonlinear vibrations of moving functionally graded plates containing porosities and contacting with liquid: internal resonance. Nonlinear Dyn. 90, 1461–1480 (2017). https://doi.org/10.1007/s11071-017-3739-z

    Article  Google Scholar 

  30. Amabili, M., Balasubramanian, P., Ferrari, G.: Travelling wave and non-stationary response in nonlinear vibrations of water-filled circular cylindrical shells: Experiments and simulations. J. Sound Vib. 381, 220–245 (2016). https://doi.org/10.1016/j.jsv.2016.06.026

    Article  Google Scholar 

  31. Chen, J., Li, Q.S.: Nonlinear aeroelastic flutter and dynamic response of composite laminated cylindrical shell in supersonic air flow. Compos. Struct. 168, 474–484 (2017). https://doi.org/10.1016/j.compstruct.2017.02.019

    Article  Google Scholar 

  32. Liu, T., Zhang, W., Wang, J.F.: Nonlinear dynamics of composite laminated circular cylindrical shell clamped along a generatrix and with membranes at both ends. Nonlinear Dyn. 90, 1393–1417 (2017). https://doi.org/10.1007/s11071-017-3734-4

    Article  Google Scholar 

  33. Zhang, W., Liu, T., Xi, A., Wang, Y.N.: Resonant responses and chaotic dynamics of composite laminated circular cylindrical shell with membranes. J. Sound Vib. 423, 65–99 (2018). https://doi.org/10.1016/j.jsv.2018.02.049

    Article  Google Scholar 

  34. Yang, S.W., Zhang, W., Hao, Y.X., Niu, Y.: Nonlinear vibrations of FGM truncated conical shell under aerodynamics and in-plane force along meridian near internal resonances. Thin-Walled Struct. 142, 369–391 (2019). https://doi.org/10.1016/j.tws.2019.04.024

    Article  Google Scholar 

  35. Bian, X., Chen, F., An, F.: Global bifurcations and chaos of a composite laminated cylindrical shell in supersonic air flow. Nonlinear Dyn. 96, 1095–1114 (2019). https://doi.org/10.1007/s11071-019-04842-9

    Article  MATH  Google Scholar 

  36. Affdl, J.C.H., Kardos, J.L.: The Halpin–Tsai equations: a review. Polym. Eng. Sci. 16, 344–352 (1976). https://doi.org/10.1002/pen.760160512

    Article  Google Scholar 

  37. De Villoria, R.G., Miravete, A.: Mechanical model to evaluate the effect of the dispersion in nanocomposites. Acta Mater. 55, 3025–3031 (2007). https://doi.org/10.1016/j.actamat.2007.01.007

    Article  Google Scholar 

  38. Amabili, M.: Nonlinear Vibrations and Stability of Shells and Plates. Cambridge University Press, Cambridge (2008)

    Book  Google Scholar 

  39. Soedel, W.: Vibrations of Shells and Plates. CRC Press, Boca Raton (2004)

    Book  Google Scholar 

  40. Atluri, S.: A perturbation analysis of non-linear free flexural vibrations of a circular cylindrical shell. Int. J. Solids Struct. 8, 549–569 (1972). https://doi.org/10.1016/0020-7683(72)90022-4

    Article  MATH  Google Scholar 

  41. Amabili, M., Pellicano, F., Vakakis, A.F.: Nonlinear vibrations and multiple resonances of fluid-filled, circular shells, part 1: equations of motion and numerical results. J. Vib. Acoust. 122, 346–354 (2000). https://doi.org/10.1115/1.1288593

    Article  Google Scholar 

  42. Dowell, E.H., Ventres, C.S.: Modal equations for the nonlinear flexural vibrations of a cylindrical shell. Int. J. Solids Struct. 4, 975–991 (1968). https://doi.org/10.1016/0020-7683(68)90017-6

    Article  MATH  Google Scholar 

  43. Dhooge, A., Govaerts, W., Kuznetsov, Y.A., Mestrom, W., Riet, A.M., Sautois, B.: MATCONT and CL MATCONT: Continuation Toolboxes in Matlab. Universiteit Gent, Belgium and Utrecht University, Gent, Belgium, Utrecht (2006)

    Google Scholar 

  44. Pellicano, F.: Vibrations of circular cylindrical shells: Theory and experiments. J. Sound Vib. 303, 154–170 (2007). https://doi.org/10.1016/j.jsv.2007.01.022

    Article  Google Scholar 

  45. Wang, Y., Wu, D.: Free vibration of functionally graded porous cylindrical shell using a sinusoidal shear deformation theory. Aerosp. Sci. Technol. 66, 83–91 (2017). https://doi.org/10.1016/j.ast.2017.03.003

    Article  Google Scholar 

Download references

Funding

This research was supported by the National Natural Science Foundation of China (Grant No. 11922205), LiaoNing Revitalization Talents Program (Grant No. XLYC1807026), and the Fundamental Research Funds for the Central Universities (Grant No. N2005019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Qing Wang.

Ethics declarations

Conflicts of interest

Authors certify that there is not any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Functioni (i = 1, 2, 3, 4) in Eqs. (4851) is:

$$ \begin{gathered} {\text{Function}}_{1} \left[ {A_{1,n} ,B_{1,n}^{{}} ,A_{1,0} ,A_{3,0} } \right] = p_{1} A_{1,n}^{3} + p_{2} A_{1,0}^{2} A_{1,n} + p_{3} A_{1,0} A_{1,n} A_{3,0} + p_{4} A_{1,n}^{{}} B_{1,n}^{2} + p_{5} A_{1,n} A_{3,0}^{2} \hfill \\ + p_{6} A_{1,0} A_{1,n} + p_{7} A_{1,n} A_{3,0}^{{}} , \hfill \\ {\text{Function}}_{2} \left[ {A_{1,n} ,B_{1,n}^{{}} ,A_{1,0} ,A_{3,0} } \right] = p_{8} B_{1,n}^{3} + p_{9} A_{1,0}^{2} B_{1,n} + p_{10} A_{1,n}^{2} B_{1,n}^{{}} + p_{11} A_{1,0} B_{1,n} A_{3,0} \hfill \\ + p_{12} B_{1,n} A_{3,0}^{2} + p_{13} A_{1,0} B_{1,n} + p_{14} B_{1,n} A_{3,0}^{{}} , \hfill \\ {\text{Function}}_{3} \left[ {A_{1,n} ,B_{1,n}^{{}} ,A_{1,0} ,A_{3,0} } \right] = p_{15} A_{1,0}^{2} + p_{16} A_{3,0}^{2} + p_{17} A_{1,n}^{2} + p_{18} B_{1,n}^{2} + p_{19} A_{1,0}^{{}} A_{1,n}^{2} \hfill \\ + p_{20} A_{1,n}^{2} A_{3,0}^{{}} + p_{21} A_{1,0}^{{}} B_{1,n}^{2} + p_{22} A_{3,0}^{{}} B_{1,n}^{2} + p_{23} A_{3,0}^{{}} , \hfill \\ {\text{Function}}_{4} \left[ {A_{1,n} ,B_{1,n}^{{}} ,A_{1,0} ,A_{3,0} } \right] = p_{{{24}}} A_{1,0}^{{}} A_{1,n}^{2} + p_{{{25}}} A_{3,0}^{{}} A_{1,n}^{2} + p_{{{26}}} A_{1,0}^{{}} B_{1,n}^{2} + p_{{{27}}} A_{3,0}^{{}} B_{1,n}^{2} \hfill \\ + p_{{{28}}} A_{1,0}^{2} + p_{{{29}}} A_{1,n}^{2} + p_{{{30}}} A_{3,0}^{2} + p_{{{31}}} B_{1,n}^{2} + p_{{{32}}} A_{1,0}^{{}} . \hfill \\ \end{gathered} $$

where pi (i = 1, 2, …, 32) are constant coefficients.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, C., Wang, Y.Q. Nonlinear forced vibration of functionally graded graphene platelet-reinforced metal foam cylindrical shells: internal resonances. Nonlinear Dyn 104, 2051–2069 (2021). https://doi.org/10.1007/s11071-021-06401-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06401-7

Keywords

Navigation