Skip to main content
Log in

Strain-based finite element formulation for the analysis of functionally graded plates

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

This work introduces a novel four-node quadrilateral finite element based on the strain approach and the first-order shear deformation theory for static and free vibration responses of functionally graded (FG) material plates. Material properties of the plate are assumed to be graded across the thickness direction by using a simple power law distribution of the volume fractions constituents. The developed element possesses five essential degrees of freedom per node. This element is obtained by the superposition of two strain-based elements where the first is a membrane with two degrees of freedom per node and the second is a Reissner–Mindlin plate that has three degrees of freedom per node. The displacements field of the proposed element which contains higher-order terms is based on assumed strain functions satisfying compatibility equations. The performance of the suggested element is evaluated through several tests and the obtained results are compared with available solutions from the literature. The results of the present element have proved excellent accuracy and efficiency in predicting bending and free vibration of FG plates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Yamanouchi, M., Koizumi, M., Hirai, T., Shiota, I. (eds.): In: Proceedings of 1st International Symposium Functionally Gradient Materials, Japan (1990)

  2. Fukui, Y.: Fundamental investigation of functionally gradient material manufacturing system using centrifugal force. Int. J. Jpn. Soc. Mech. Eng. III(34), 144–148 (1991)

    Google Scholar 

  3. Praveen, G.N., Reddy, J.N.: Nonlinear transient thermoelastic analysis of functionally graded ceramic–metal plates. Int. J. Solids Struct. 35(33), 4457–4476 (1998)

    Article  Google Scholar 

  4. Reddy, J.N.: Analysis of functionally graded plates. Int. J. Numer. Methods Eng. 47(1–3), 663–684 (2000)

    Article  Google Scholar 

  5. Nguyen-Xuan, H., Tran, L.V., Nguyen-Thoi, T., Vu-Do, H.C.: Analysis of functionally graded plates using an edge-based smoothed finite element method. Compos. Struct. 93(11), 3019–3039 (2011)

    Article  Google Scholar 

  6. Nguyen-Xuan, H., Tran, L.V., Thai, C.H., Nguyen-Thoi, T.: Analysis of functionally graded plates by an efficient finite element method with node-based strain smoothing. Thin Walled Struct. 54, 1–18 (2012)

    Article  Google Scholar 

  7. Natarajan, S., Ferreira, A.J.M., Bordas, S., Carrera, E., Cinefra, M., Zenkour, A.M.: Analysis of functionally graded material plates using triangular elements with cell-based smoothed discrete shear gap method. Math. Probl. Eng. (2014). https://doi.org/10.1155/2014/247932

    Article  MathSciNet  MATH  Google Scholar 

  8. Singha, M.K., Prakash, T., Ganapathi, M.: Finite element analysis of functionally graded plates under transverse load. Finite Elem. Anal. Des. 47(4), 453–460 (2011)

    Article  Google Scholar 

  9. Thai, H.T., Choi, D.H.: Finite element formulation of various four unknown shear deformation theories for functionally graded plates. Finite Elem. Anal. Des. 75(1), 50–61 (2013)

    Article  MathSciNet  Google Scholar 

  10. Moita, J.S., Correia, V.F., Soares, C.M.M., Herskovits, J.: Higher-order finite element models for the static linear and nonlinear behaviour of functionally graded material plate–shell structures. Compos. Struct. 212(15), 465–475 (2019)

    Article  Google Scholar 

  11. Tati, A.: A five unknowns high order shear deformation finite element model for functionally graded plates bending behavior analysis. J. Braz. Soc. Mech. Sci. Eng. 43(1), 1–14 (2021)

    Article  Google Scholar 

  12. Tati, A.: Finite element analysis of thermal and mechanical buckling behavior of functionally graded plates. Arch. Appl. Mech. 91, 4571–4587 (2021)

    Article  Google Scholar 

  13. Sadgui, A., Tati, A.: A novel trigonometric shear deformation theory for the buckling and free vibration analysis of functionally graded plates. Mech. Adv. Mater. Struct. (2021). https://doi.org/10.1080/15376494.2021.1983679

    Article  Google Scholar 

  14. Ashwell, D.G., Sabir, A.B.: A new cylindrical shell finite element based on simple independent strain functions. Int. J. Mech. Sci. 14(3), 171–183 (1972)

    Article  Google Scholar 

  15. Sabir, A.B., Sfendji, A.: Triangular and rectangular plane elasticity finite elements. Thin Walled Struct. 21(3), 225–232 (1995)

    Article  Google Scholar 

  16. Djoudi, M.S., Bahai, H.: A cylindrical strain-based shell element for vibration analysis of shell structures. Finite Elem. Anal. Des. 40(13–14), 1947–1961 (2004)

    Article  Google Scholar 

  17. Bouzidi, L., Belounar, L., Guerraiche, K.: Presentation of a new membrane strain-based finite element for static and dynamic analysis. Int. J. Struct. Eng. 10(1), 40–60 (2019)

    Article  Google Scholar 

  18. Fortas, L., Belounar, L., Merzouki, T.: Formulation of a new finite element based on assumed strains for membrane structures. Int. J. Adv. Struct. Eng. 11, 9–18 (2019)

    Article  Google Scholar 

  19. Khiouani, H.E., Belounar, L., Houhou, M.N.: A new three-dimensional sector element for circular curved structures analysis. J. Solid Mech. 12(1), 165–174 (2020)

    Google Scholar 

  20. Belounar, A.: Eléments finis membranaires et flexionnels à champ de déformation pour l’analyse des structures. mémoire de Doctorat, Université de Mohamed Khider-Biskra (2019)

  21. Boussem, F., Belounar, L.: A plate bending Kirchhoff element based on assumed strain functions. J. Solid Mech. 12(4), 935–952 (2020)

    Google Scholar 

  22. Belarbi, M.T., Charif, A.: Développement d’un nouvel élément hexaédrique simple basé sur le modèle en déformation pour l’étude des plaques minces et épaisses. Rev. eur. élém. finis 8(2), 135–157 (1999)

    MATH  Google Scholar 

  23. Belounar, L., Guerraiche, K.: A new strain based brick element for plate bending. Alex. Eng. J. 53(1), 95–105 (2014)

    Article  Google Scholar 

  24. Guerraiche, K., Belounar, L., Bouzidi, L.: A new eight nodes brick finite element based on the strain approach. J. Solid Mech. 10(1), 186–199 (2018)

    Google Scholar 

  25. Messai, A., Belounar, L., Merzouki, T.: Static and free vibration of plates with a strain based brick element. Eur. J. Comput. Mech. (2019). https://doi.org/10.1080/17797179.2018.1560845

    Article  Google Scholar 

  26. Belounar, L., Guenfoud, M.: A new rectangular finite element based on the strain approach for plate bending. Thin Walled Struct. 43, 47–63 (2005)

    Article  Google Scholar 

  27. Belounar, A., Benmebarek, S., Belounar, L.: Strain based triangular finite element for plate bending analysis. Mech. Adv. Mater. Struct. 27(8), 620–632 (2020)

    Article  Google Scholar 

  28. Belounar, A., Benmebarek, S., Houhou, M.N., Belounar, L.: Static, free vibration, and buckling analysis of plates using strain-based Reissner-Mindlin elements. Int. J. Adv. Struct. Eng. 11, 211–230 (2019)

    Article  Google Scholar 

  29. Belounar, A., Benmebarek, S., Houhou, M.N., Belounar, L.: Free vibration with Mindlin plate finite element based on the strain approach. J. Inst. Eng. India C 101(2), 331–346 (2020)

    Article  Google Scholar 

  30. Boussem, F., Belounar, A., Belounar, L.: Assumed strain finite element for natural frequencies of bending plates. World J. Eng. (2021). https://doi.org/10.1108/WJE-02-2021-0114

    Article  Google Scholar 

  31. Reddy, J.N.: Mechanics of Laminated Composite Plates and Shells Theory and Analysis, 2nd edn. CRC Press, New York (2004)

    MATH  Google Scholar 

  32. Valizadeh, N., Natarajan, S., Gonzalez-Estrada, O.A., Rabczuk, T., Bui, T.Q., Bordas, S.P.A.: NURBS-based finite element analysis of functionally graded plates: static bending, vibration, buckling and flutter. Compos. Struct. 99, 309–326 (2013)

    Article  Google Scholar 

  33. Lee, Y.Y., Zhao, X., Liew, K.M.: Thermoelastic analysis of functionally graded plates using the element-free kp-Ritz method. Smart Mater. Struct. 18(3), 1–15 (2009)

    Article  Google Scholar 

  34. Gilhooley, D.F., Batra, R.C., Xiao, J.R., McCarthy, M.A., Gillespie, J.W.: Analysis of thick functionally graded plates by using higher-order shear and normal deformable plate theory and MLPG method with radial basis functions. Comput. Struct. 80(4), 539–552 (2007)

    Article  Google Scholar 

  35. Neves, A.M.A., Ferreira, A.J.M., Carrera, E., Roque, C.M.C., Cinefra, M., Jorge, R.M.N., Soares, C.M.M.: A quasi-3D sinusoidal shear deformation theory for the static and free vibration analysis of functionally graded plates. Composites B 43(2), 711–725 (2012)

    Article  Google Scholar 

  36. Neves, A.M.A., Ferreira, A.J.M., Carrera, E., Cinefra, M., Roque, C.M.C., Jorge, R.M.N., Soares, C.M.M.: A quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates. Compos. Struct. 94(5), 1814–1825 (2012)

    Article  Google Scholar 

  37. Neves, A.M.A., Ferreira, A.J.M., Carrera, E., Cinefra, M., Roque, C.M.C., Jorge, R.M.N., Soares, C.M.M.: Static, free vibration and buckling analysis of isotropic and sandwich functionally graded plates using a quasi-3D higher-order shear deformation theory and a meshless technique. Composites B 44(1), 657–674 (2013)

    Article  Google Scholar 

  38. Carrera, E., Brischetto, S., Cinefra, M., Soave, M.: Effects of thickness stretching in functionally graded plates and shells. Composites B 42(2), 123–133 (2011)

    Article  Google Scholar 

  39. Carrera, E., Brischetto, S., Robaldo, A.: Variable kinematic model for the analysis of functionally graded material plates. AIAA J. 46(1), 194–203 (2008)

    Article  Google Scholar 

  40. Matsunaga, H.: Free vibration and stability of functionally graded plates according to a 2D higher-order deformation theory. Compos. Struct. 82(4), 499–512 (2008)

    Article  Google Scholar 

  41. Zhao, X., Lee, Y.Y., Liew, K.M.: Free vibration analysis of functionally graded plates using the element-free kp-Ritz method. J. Sound Vib. 319(3–5), 918–939 (2009)

    Article  Google Scholar 

  42. Hosseini-Hashemi, S., Fadaee, M., Atashipour, S.R.: A new exact analytical approach for free vibration of Reissner-Mindlin functionally graded rectangular plates. Int. J. Mech. Sci. 53(1), 11–22 (2011)

    Article  Google Scholar 

  43. Hosseini-Hashemi, S., Fadaee, M., Es’Haghi, M.: A novel approach for in-plane/out of-plane frequency analysis of functionally graded circular/annular plates. Int. J. Mech. Sci. 52(8), 1025–1035 (2010)

    Article  Google Scholar 

  44. Ebrahimi, F., Rastgoo, A., Atai, A.A.: A theoretical analysis of smart moderately thick shear deformable annular functionally graded plate. Eur. J. Mech. A/Solids 28(5), 962–973 (2009)

    Article  Google Scholar 

  45. Tran, L.V., Ferreira, A.J.M., Nguyen-Xuan, H.: Isogeometric analysis of functionally graded plates using higher-order shear deformation theory. Composites B 51, 368–383 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abderahim Belounar.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

For membrane behaviour, the three strains (εx, εy and γxy) given by Eq. (30) satisfy the following compatibility equation

$$\frac{{\partial^{2} \varepsilon_{x} }}{{\partial y^{2} }} + \frac{{\partial^{2} \varepsilon_{y} }}{{\partial x^{2} }} - \frac{{\partial^{2} \gamma_{xy} }}{\partial x\partial y} = 0.$$
(1a)

For Reissner–Mindlin plate theory, the curvatures (κx, κy and κxy) and the transverse shear strains (γxz and γyz) given in Eqs. (34)–(35) satisfy the following compatibility equations:

$$\frac{{\partial^{2} \kappa_{x} }}{{\partial y^{2} }} + \frac{{\partial^{2} \kappa_{y} }}{{\partial x^{2} }} = \frac{{\partial^{2} \kappa_{xy} }}{\partial x\partial y};$$
$$\frac{{\partial^{2} \gamma_{xz} }}{\partial x\partial y} - \frac{{\partial^{2} \gamma_{yz} }}{{\partial x^{2} }} + \frac{{\partial \kappa_{xy} }}{\partial x} = 2\frac{{\partial \kappa_{x} }}{\partial y};$$
$$\frac{{\partial^{2} \gamma_{yz} }}{\partial x\partial y} - \frac{{\partial^{2} \gamma_{xz} }}{{\partial y^{2} }} + \frac{{\partial \kappa_{xy} }}{\partial y} = 2\frac{{\partial \kappa_{y} }}{\partial x}.$$
(2a)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belounar, A., Boussem, F., Houhou, M.N. et al. Strain-based finite element formulation for the analysis of functionally graded plates. Arch Appl Mech 92, 2061–2079 (2022). https://doi.org/10.1007/s00419-022-02160-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-022-02160-y

Keywords

Navigation