Skip to main content
Log in

Finite element analysis of thermal and mechanical buckling behavior of functionally graded plates

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The buckling behavior of functionally graded rectangular plates under mechanical and thermal loading is investigated using a four-node finite element based on a simple high-order shear deformation theory. Unlike other high-order shear deformation theories which employ a great number of unknown, the present element has only five degrees of freedom per node. The principle of total potential energy is used to derive the stiffness and geometrical matrices. Moreover, the assumed natural shear strain technique is introduced to elevate any shear locking phenomenon. The proposed model accounts for the quadratic variation of the transverse shear strains across the thickness and satisfies the zero traction boundary conditions on the top and bottom surfaces of the plate. Therefore, no shear correction factors are needed. Convergence and comparison studies showed the stability and accuracy of the present finite element in predicting the critical buckling load and the critical temperature rise of isotropic and functionally graded material plates. The effect of volume fraction exponent, side-to-thickness ratios, and loading types on the buckling behavior of functionally graded plates are also studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Koizumi, M.: The concept of FGM. Ceram. Trans. Funct. Grad. Mater. 34, 3–10 (1993)

    Google Scholar 

  2. Yamanouchi, M., Koizumi, M., Hirai, T., Shiota, I.: In: Proceeding of the First International Symposium on Functionally Gradient Materials, Sendai, Japan (1990)

  3. Birman, V.: Buckling of functionally graded hybrid composite plates. In: Proceedings of the 10th Conference on Engineering Mechanics, vol. 2, pp 1199–292 (1995)

  4. Reddy, J.N., Chin, C.D.: Thermomechanical analysis of functionally graded cylinders and plates. J. Therm. Stress. 21, 593–626 (1998)

    Article  Google Scholar 

  5. Loy, C.T., Lam, K.Y., Reddy, J.N.: Vibration of functionally graded cylindrical shells. Int. J. Mech. Sic. 41, 309–324 (1999)

    Article  Google Scholar 

  6. Reddy, J.N.: Analysis of functionally graded plates. Int. J. Numer. Methods Eng. 47, 663–684 (2000)

    Article  Google Scholar 

  7. Cheng, Z.Q., Batra, R.C.: Deflection relationships between the homogeneous Kirchhoff plate theory and different functionally graded plate theories. Arch. Mech. 52, 143–158 (2000)

    MATH  Google Scholar 

  8. Vel, S.S., Batra, R.C.: Exact solution for thermoelastic deformations of functionally graded thick rectangular plates. AIAA J. 40, 1421–1433 (2002)

    Article  Google Scholar 

  9. Feldman, E., Aboudi, J.: Buckling analysis of functionally graded plates subjected to uniaxial loading. Compos. Struct. 38, 29–36 (1997)

    Article  Google Scholar 

  10. Javaheri, R., Eslami, M.R.: Thermal buckling of functionally graded plates. AIAA J. 40, 162–169 (2002)

    Article  Google Scholar 

  11. Javaheri, R., Eslami, M.R.: Thermal buckling of functionally graded plates based on higher order theory. J. Therm. Stress. 25, 603–625 (2002)

    Article  Google Scholar 

  12. Lanhe, W.: Thermal buckling of a simply supported moderately thick rectangular FGM plate. Compos. Struct. 64, 211–218 (2004)

    Article  Google Scholar 

  13. Liew, K.M., Yang, J., Kitipornchai, S.: Thermal post-buckling of laminated plates comprising FGM with temperature-dependent properties. Trans. ASME J. Appl. Mech. 71, 839–850 (2004)

    Article  Google Scholar 

  14. Na, K.-S., Kim, J.-H.: Three-dimensional thermomechanical buckling analysis for functionally graded composite plates. Compos. Struct. 73, 413–422 (2006)

    Article  Google Scholar 

  15. Zhao, X., Lee, Y.Y., Liew, K.M.: Mechanical and thermal buckling analysis of functionally graded plates. Compos. Struct. 90, 161–171 (2009)

    Article  Google Scholar 

  16. Huang, Y., Li, X.F.: Buckling of functionally graded circular columns including shear deformation. Mater. Des. 31(7), 3159–3166 (2010)

    Article  Google Scholar 

  17. Kiani, Y., Eslami, M.R.: Thermal buckling analysis of functionally graded material beams. Int. J. Mech. Mater. Des. 6(3), 229–238 (2010)

    Article  Google Scholar 

  18. Talha, M., Singh, B.N.: Thermo-mechanical buckling analysis of finite element modeled functionally graded ceramic-metal plates. Int. J. Appl. Mech. 3(4), 867–880 (2011). https://doi.org/10.1142/S1758825111001275

    Article  Google Scholar 

  19. Fekrar, A., El Meiche, N., Bessaim, A., Tounsi, A., Adda Bedia, E.A.: Buckling analysis offunctionally graded hybrid composite plates using a new four variable refined plate theory. Steel Compos. Struct. 13(1), 91–107 (2012)

    Article  Google Scholar 

  20. Valizadeh, N., Natarajan, S., Gonzalez-Estrada, O.A., Rabczuk, T., Bui, T.Q., Bordas, S.P.: NURBS-based finite element analysis of functionally graded plates: static bending, vibration, buckling and flutter. Compos. Struct. (2012). https://doi.org/10.1016/j.compstruct.2012.11.008

    Article  Google Scholar 

  21. Bouiadjra, M.B., Houari, M.S.A., Tounsi, A.: Thermal buckling of functionally graded plates according to a four-variable refined plate theory. J. Therm. Stress. 35, 677–694 (2012)

    Article  Google Scholar 

  22. Tran, L.V., Thai, C.H., Nguyen-Xuan, H.: An isogeometric finite element formulation for thermal buckling analysis of functionally graded plates. Finite Elem. Anal. Des. 73, 65–76 (2013)

    Article  Google Scholar 

  23. Zhang, L.W., Zhu, P., Liew, K.M.: Thermal buckling of functionally graded plates using a local Kriging meshless method. Compos. Struct. 108, 472–492 (2014)

    Article  Google Scholar 

  24. Hassan, A.H.A., Kurgan, N.: A review on buckling analysis of functionally graded plates under thermo-mechanical loads. Int. J. Eng. Appl. Sci. 11(1), 345–368 (2019)

    Google Scholar 

  25. Trabelsi, S., Frikha, A., Zghal, S., Dammak, F.: A modified FSDT-based four nodes finite shell element for thermal buckling analysis of functionally graded plates and cylindrical shells. Eng. Struct. 178, 444–459 (2019)

    Article  Google Scholar 

  26. Huang, H., Rao, D.: Thermal buckling of functionally graded cylindrical shells with temperature-dependent elastoplastic properties. Contin. Mech. Thermodyn. 32, 1403–1415 (2020). https://doi.org/10.1007/s00161-019-00854-3

    Article  MathSciNet  Google Scholar 

  27. Vaghefi, R.: Three-dimensional temperature-dependent thermo-elastoplastic bending analysis of functionally graded skew plates using a novel meshless approach. Aerosp. Sci. Technol. 104, 2020 (2020). https://doi.org/10.1016/j.ast.2020.105916

    Article  Google Scholar 

  28. Jędrysiak, J., Kaźmierczak-Sobińska, M.: Theoretical analysis of buckling for functionally graded thin plates with microstructure resting on an elastic foundation. Materials 13, 4031 (2020)

    Article  Google Scholar 

  29. Gao, Y., Xiao, W., Zhu, H.: Snap-buckling of functionally graded multilayer graphene platelet-reinforced composite curved nanobeams with geometrical imperfections. Eur. J. Mech. A/Solids 82, 2020 (2020)

    Article  MathSciNet  Google Scholar 

  30. Tati, A.: A five unknowns high order shear deformation finite element model for functionally graded plates bending behavior analysis. J Braz. Soc. Mech. Sci. Eng. 43, 45 (2021). https://doi.org/10.1007/s40430-020-02736-1

    Article  Google Scholar 

  31. Tati, A., Bouadjadja, S., Bada, Y.: Free vibration of thermally stressed angle-ply laminated composite using first-order shear deformation theory model with assumed natural shear strain. J. Inst. Eng. India Ser. C 100, 937–947 (2019). https://doi.org/10.1007/s40032-018-0484-0

    Article  Google Scholar 

  32. Reddy, J.N.: A simple higher order theory for laminated composite plates. ASME J. Appl. Mech. 51, 745–752 (1984)

    Article  Google Scholar 

  33. Noor, A.K., Burton, W.S.: Three-dimensional solutions for thethermal buckling and sensitivity derivatives of temperature–sensitive multilayered angle-ply plates. ASME J. Appl. Mech. 59(12), 848–856 (1992)

    Article  Google Scholar 

  34. Thai, H.-T., Choi, D.-H.: An efficient and simple refined theory for buckling analysis of functionally graded plates. Appl. Math. Model. 36, 1008–1022 (2012)

    Article  MathSciNet  Google Scholar 

  35. Sayyad, A.S., Ghugal, Y.M.: On the buckling of isotropic, transversely isotropic, and laminated composite rectangular plates. Int. J. Struct. Stabil. Dyn. 14(7), 1450020 (2014)

    Article  MathSciNet  Google Scholar 

  36. Zenkour, A.M., Aljadani, M.H.: Mechanical buckling of functionally graded plates using a refined higher-order shear and normal deformation plate theory. Adv. Aircr. Spacecr. Sci. 5(6), 615–632 (2018)

    Google Scholar 

  37. Reddy, B.S., Kumar, J.S., Reddy, C.E., Reddy, K.V.K.: Buckling analysis of functionally graded material plates using higher order shear deformation theory. J. Compos. 2013, 1–12 (2013)

    Article  Google Scholar 

  38. Bodaghi, M., Saidi, A.R.: Thermoelastic buckling behavior of thick functionally graded rectangular plates. Arch. Appl. Mech. 81, 1555–1572 (2011)

    Article  Google Scholar 

  39. Matsunaga, H.: Thermal buckling of cross-ply laminated composite and sandwich plates according to a global higher-order deformation theory. Compos. Struct. 68(4), 439–454 (2005)

    Article  Google Scholar 

  40. Matsunaga, H.: Thermal buckling of functionally graded plates according to a 2D higher-order deformation theory. Compos. Struct. 90, 76–86 (2009)

    Article  Google Scholar 

  41. Mudhaffar, I.M., Tounsi, A., Chikh, A., Al-Osta, M.A., Al-Zahrani, M.M., Al-Dulaijan, S.U.: Hygro-thermo-mechanical bending behavior of advanced functionally graded ceramic metal plate resting on a viscoelastic foundation. Structures 33, 2177–2189 (2021)

    Article  Google Scholar 

  42. Rebai, B., Bouhadra, A., Bousahla, A.A., et al.: Thermoelastic response of functionally graded sandwich plates using a simple integral HSDT. Arch. Appl. Mech. 91, 3403–3420 (2021). https://doi.org/10.1007/s00419-021-01973-7

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelouahab Tati.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tati, A. Finite element analysis of thermal and mechanical buckling behavior of functionally graded plates. Arch Appl Mech 91, 4571–4587 (2021). https://doi.org/10.1007/s00419-021-02025-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-021-02025-w

Keywords

Navigation