Skip to main content
Log in

Thermoelastic damping in a thin circular transversely isotropic Kirchhoff–Love plate due to GN theory of type III

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

This research deals with the study of thermoelastic damping in transversely isotropic thin circular Kirchhoff–Love plate. Mathematical model is formed for time-harmonic displacement and temperature fields due to the GN theory of thermoelasticity of type III. The model is solved to obtain the expressions for thermoelastic damping, displacement, and temperature fields for circumferential surface wave modes for simply supported and clamped plate resonators. The numerical results for both the simply supported and clamped boundary conditions for an axisymmetric circular plate are illustrated. It is observed that the damping of vibrations is considerably influenced by surface wave modes. The thickness of the plate also has major effects on the vibrations of resonators. The computer-simulated results to illustrate the effect of circumferential surface wave modes on thermoelastic damping for the GN III theory of thermoelasticity have been depicted graphically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

\(\omega\) :

Frequency

\(\delta_{ij}\) :

Kronecker delta

\(T\) :

Absolute temperature

\(e_{ij}\) :

Strain tensors

\(t_{ij}\) :

Stress tensors

\(\rho\) :

Medium density

\(C_{E}\) :

Specific heat

\(\beta_{ij}\) :

Thermal elastic coupling tensor

\(K_{ij}\) :

Thermal conductivity

\(c_{ijkl}\) :

Elastic parameters

\(\alpha_{ij}\) :

Linear thermal expansion coefficient

\({\varvec{u}}\) :

Displacement vector

\(T_{0}\) :

Reference temperature

\(K_{ij}^{*}\) :

Materialistic constant

\(u_{i}\) :

Components of displacement

\(J_{m}\) :

Bessel function of the first kind of order m

\(Y_{m}\) :

Bessel function of second kind of order m

\(I_{m}\) :

Hyperbolic or modified Bessel function of order m of the first kind

\(K_{m}\) :

Hyperbolic or modified Bessel function of order m of the second kind

References

  1. Kumar, R., Devi, S., Sharma, V.: Damping in microscale modified couple stress thermoelastic circular Kirchhoff plate resonators. Presented at the (2017)

  2. Shaat, M., Mahmoud, F.F., Gao, X.-L., Faheem, A.F.: Size-dependent bending analysis of Kirchhoff nano-plates based on a modified couple-stress theory including surface effects. Int. J. Mech. Sci. 79, 31–37 (2014). https://doi.org/10.1016/j.ijmecsci.2013.11.022

    Article  Google Scholar 

  3. Tripathi, J.J., Warbhe, S.D., Deshmukh, K.C., Verma, J.: Fractional order thermoelastic deflection in a thin circular plate. Appl. Appl. Math. Int. J. (AAM) 12, 898–909 (2017)

    MathSciNet  MATH  Google Scholar 

  4. Salajeghe, S., Khadem, S.E., Rasekh, M.: Nonlinear analysis of thermoelastic damping in axisymmetric vibration of micro circular thin-plate resonators. Appl. Math. Model. 36, 5991–6000 (2012). https://doi.org/10.1016/j.apm.2012.01.027

    Article  MathSciNet  MATH  Google Scholar 

  5. Sun, Y., Yang, J., Jiang, Y.: A theoretical analysis of thermoelastic damping model in laminated trilayered circular plate resonators. World J. Mech. 04, 102–111 (2014). https://doi.org/10.4236/wjm.2014.44012

    Article  Google Scholar 

  6. Sun, Y., Tohmyoh, H.: Thermoelastic damping of the axisymmetric vibration of circular plate resonators. J. Sound Vib. 319, 392–405 (2009). https://doi.org/10.1016/j.jsv.2008.06.017

    Article  Google Scholar 

  7. Sharma, J.N., Sharma, R.: Damping in micro-scale generalized thermoelastic circular plate resonators. Ultrasonics 51, 352–358 (2011). https://doi.org/10.1016/j.ultras.2010.10.009

    Article  Google Scholar 

  8. Sharma, J.N., Pathania, V.: Generalized thermoelastic wave propagation in circumferential direction of transversely isotropic cylindrical curved plates. J. Sound Vib. 281, 1117–1131 (2005). https://doi.org/10.1016/j.jsv.2004.02.010

    Article  MATH  Google Scholar 

  9. Khobragade, N.L., Deshmukh, K.C.: Thermoelastic problem of a thin circular plate subject to a distributed heat supply. J. Therm. Stress. 28, 171–184 (2005). https://doi.org/10.1080/014957390900012

    Article  Google Scholar 

  10. Zhang, G.Y., Gao, X.-L., Wang, J.Z.: A non-classical model for circular Kirchhoff plates incorporating microstructure and surface energy effects. Acta Mech. 226, 4073–4085 (2015). https://doi.org/10.1007/s00707-015-1478-0

    Article  MathSciNet  MATH  Google Scholar 

  11. Gaikwad, K.R.: Axi-symmetric thermoelastic stress analysis of a thin circular plate due to heat generation. Int. J. Dyn. Syst. Differ. Equ. 9, 187 (2019). https://doi.org/10.1504/IJDSDE.2019.100571

    Article  MathSciNet  Google Scholar 

  12. Sharma, J.N., Kaur, R.: Transverse vibrations in thermoelastic-diffusive thin micro-beam resonators. J. Therm. Stress. 37, 1265–1285 (2014). https://doi.org/10.1080/01495739.2014.936252

    Article  Google Scholar 

  13. Fantuzzi, N., Trovalusci, P., Dharasura, S.: Mechanical behavior of anisotropic composite materials as micropolar continua. Front. Mater. 6, 1–11 (2019). https://doi.org/10.3389/fmats.2019.00059

    Article  Google Scholar 

  14. Marin, M., Lupu, M.: On harmonic vibrations in thermoelasticity of micropolar bodies. J. Vib. Control 4, 507–518 (1998). https://doi.org/10.1177/107754639800400501

    Article  MathSciNet  MATH  Google Scholar 

  15. Bobe, A., Nicola, A., Popa, C.: Weaker hypotheses for the general projection algorithm with corrections. An. Univ. “Ovidius” Constanta Ser. Mat. 23, 9–16 (2015). https://doi.org/10.1515/auom-2015-0043

    Article  MathSciNet  MATH  Google Scholar 

  16. Singh, A., Das, S., Craciun, E.-M.: Effect of thermomechanical loading on an edge crack of finite length in an infinite orthotropic strip. Mech. Compos. Mater. 55, 285–296 (2019). https://doi.org/10.1007/s11029-019-09812-1

    Article  Google Scholar 

  17. Ganczarski, A., Szubartowski, D.: Plane stress state of FGM thick plate under thermal loading. Arch. Appl. Mech. 86, 111–120 (2016). https://doi.org/10.1007/s00419-015-1105-5

    Article  Google Scholar 

  18. Abouelregal, A.E., Zenkour, A.M.: Thermoelastic response of nanobeam resonators subjected to exponential decaying time varying load. J. Theor. Appl. Mech. 55, 937–948 (2017). https://doi.org/10.15632/jtam-pl.55.3.937

    Article  Google Scholar 

  19. Aksoy, H.G.: Wave propagation in heterogeneous media with local and nonlocal material behavior. J. Elast. 122, 1–25 (2016). https://doi.org/10.1007/s10659-015-9530-9

    Article  MathSciNet  MATH  Google Scholar 

  20. Abd-Elaziz, E.M., Othman, M.I.A.: Effect of Thomson and thermal loading due to laser pulse in a magneto-thermo-elastic porous medium with energy dissipation. ZAMM J. Appl. Math. Mech. Z. Angew. Math. Mech. (2019). https://doi.org/10.1002/zamm.201900079

    Article  Google Scholar 

  21. Abd-Elaziz, E., Marin, M., Othman, M.: On the effect of Thomson and initial stress in a thermo-porous elastic solid under G–N electromagnetic theory. Symmetry (Basel) 11, 413 (2019). https://doi.org/10.3390/sym11030413

    Article  MATH  Google Scholar 

  22. Marin, M., Craciun, E.M., Pop, N.: Some results in Green–Lindsay thermoelasticity of bodies with dipolar structure. Mathematics 8, 1–12 (2020). https://doi.org/10.3390/math8040497

    Article  Google Scholar 

  23. Marin, M., Craciun, E.M.: Uniqueness results for a boundary value problem in dipolar thermoelasticity to model composite materials. Compos. Part B Eng. 126, 27–37 (2017). https://doi.org/10.1016/j.compositesb.2017.05.063

    Article  Google Scholar 

  24. Karami, B., Janghorban, M., Tounsi, A.: Nonlocal strain gradient 3D elasticity theory for anisotropic spherical nanoparticles. Steel Compos. Struct. 27, 201–216 (2018). https://doi.org/10.12989/scs.2018.27.2.201

    Article  Google Scholar 

  25. Karami, B., Janghorban, M., Rabczuk, T.: Forced vibration analysis of functionally graded anisotropic nanoplates resting on Winkler/Pasternak-foundation. Comput. Mater. Contin. 62, 607–629 (2020). https://doi.org/10.32604/cmc.2020.08032

    Article  Google Scholar 

  26. Zhang, L., Bhatti, M.M., Michaelides, E.E.: Thermally developed coupled stress particle–fluid motion with mass transfer and peristalsis. J. Therm. Anal. Calorim. (2020). https://doi.org/10.1007/s10973-020-09871-w

    Article  Google Scholar 

  27. Bhatti, M.M., Ellahi, R., Zeeshan, A., Marin, M., Ijaz, N.: Numerical study of heat transfer and Hall current impact on peristaltic propulsion of particle–fluid suspension with compliant wall properties. Mod. Phys. Lett. B 33, 1950439 (2019). https://doi.org/10.1142/S0217984919504396

    Article  MathSciNet  Google Scholar 

  28. Bhatti, M.M., Yousif, M.A., Mishra, S.R., Shahid, A.: Simultaneous influence of thermo-diffusion and diffusion-thermo on non-Newtonian hyperbolic tangent magnetised nanofluid with Hall current through a nonlinear stretching surface. Pramana 93, 88 (2019). https://doi.org/10.1007/s12043-019-1850-z

    Article  Google Scholar 

  29. Sharma, K., Marin, M.: Reflection and transmission of waves from imperfect boundary between two heat conducting micropolar thermoelastic solids. An. Univ. “Ovidius” Constanta Ser. Mat. 22, 151–176 (2014). https://doi.org/10.2478/auom-2014-0040

    Article  MathSciNet  MATH  Google Scholar 

  30. Sharma, J.N., Grover, D.: Thermoelastic vibrations in micro-/nano-scale beam resonators with voids. J. Sound Vib. 330, 2964–2977 (2011). https://doi.org/10.1016/j.jsv.2011.01.012

    Article  Google Scholar 

  31. Arain, M.B., Bhatti, M.M., Zeeshan, A., Saeed, T., Hobiny, A.: Analysis of Arrhenius kinetics on multiphase flow between a pair of rotating circular plates. Math. Probl. Eng. 2020, 1–17 (2020). https://doi.org/10.1155/2020/2749105

    Article  MathSciNet  MATH  Google Scholar 

  32. Bhatti, M.M., Abdelsalam, S.I.: Thermodynamic entropy of a magnetized Ree–Eyring particle–fluid motion with irreversibility process: a mathematical paradigm. ZAMM J. Appl. Math. Mech. Z. Angew. Math. Mech. (2020). https://doi.org/10.1002/zamm.202000186

    Article  Google Scholar 

  33. Abbas, I.A.: Free Vibrations of nanoscale beam under two-temperature Green and Naghdi model. Int. J. Acoust. Vib. 23, 289–293 (2018). https://doi.org/10.20855/ijav.2018.23.31051

    Article  Google Scholar 

  34. Lata, P., Kaur, I.: A study of transversely isotropic thermoelastic beam with Green–Naghdi Type-II and Type-III theories of thermoelasticity. Appl. Appl. Math. An Int. J. 14, 270–283 (2019)

    MathSciNet  MATH  Google Scholar 

  35. Kaur, I., Lata, P.: Rayleigh wave propagation in transversely isotropic magneto-thermoelastic medium with three-phase-lag heat transfer and diffusion. Int. J. Mech. Mater. Eng. (2019). https://doi.org/10.1186/s40712-019-0108-3

    Article  Google Scholar 

  36. Kaur, I., Lata, P.: Stoneley wave propagation in transversely isotropic thermoelastic medium with two temperature and rotation. GEM Int. J. Geomath. 11, 1–17 (2020). https://doi.org/10.1007/s13137-020-0140-8

    Article  MathSciNet  MATH  Google Scholar 

  37. Kaur, I., Lata, P., Singh, K.: Effect of Hall current in transversely isotropic magneto-thermoelastic rotating medium with fractional-order generalized heat transfer due to ramp-type heat. Indian J. Phys. (2020). https://doi.org/10.1007/s12648-020-01718-2

    Article  Google Scholar 

  38. Kaur, I., Lata, P.: Effect of hall current on propagation of plane wave in transversely isotropic thermoelastic medium with two temperature and fractional order heat transfer. SN Appl. Sci. 1, 900 (2019). https://doi.org/10.1007/s42452-019-0942-1

    Article  Google Scholar 

  39. Kaur, I., Lata, P.: Transversely isotropic thermoelastic thin circular plate with constant and periodically varying load and heat source. Int. J. Mech. Mater. Eng. (2019). https://doi.org/10.1186/s40712-019-0107-4

    Article  Google Scholar 

  40. Bhatti, M.M., Michaelides, E.E.: Study of Arrhenius activation energy on the thermo-bioconvection nanofluid flow over a Riga plate. J. Therm. Anal. Calorim. (2020). https://doi.org/10.1007/s10973-020-09492-3

    Article  Google Scholar 

  41. Rao, S.S.: Vibration of Continuous Systems. Wiley, New York (2007)

    Google Scholar 

  42. Harper, C.: Introduction to Mathematical Physics. Prentice Hall India Learning Private Limited, New Delhi (1987)

    Google Scholar 

  43. Sun, Y., Saka, M.: Thermoelastic damping in micro-scale circular plate resonators. J. Sound Vib. 329, 328–337 (2010). https://doi.org/10.1016/j.jsv.2009.09.014

    Article  Google Scholar 

  44. Dhaliwal, R.S., Singh, A.: Dynamic Coupled Thermoelasticity. Hindustan Publication Corporation, New Delhi (1980)

    Google Scholar 

Download references

Funding

No fund/grant/scholarship has been taken for the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iqbal Kaur.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, I., Singh, K. Thermoelastic damping in a thin circular transversely isotropic Kirchhoff–Love plate due to GN theory of type III. Arch Appl Mech 91, 2143–2157 (2021). https://doi.org/10.1007/s00419-020-01874-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-020-01874-1

Keywords

Mathematics Subject Classification

Navigation