Skip to main content
Log in

Wave Propagation in Heterogeneous Media with Local and Nonlocal Material Behavior

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

Wave propagation in heterogeneous solids has been an interest of researchers due to industrial applications. Some of the heterogeneous materials can exhibit power law scaling in material behavior which can be characterized by the fractal dimension of the microstructure. In this study, wave propagation in heterogeneous media with self-similar structure is investigated via fractional calculus along with space-time discontinuous Galerkin method. One and two dimensional problems are studied to demonstrate the capability of the proposed model in modeling heterogeneous media. The results show that the proposed model is a good candidate for modeling the mechanical behavior of disordered materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Agrawal, O.P.: A general finite element formulation for fractional variational problems. J. Math. Anal. Appl. 337, 1–12 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  2. Aksoy, H.G., Senocak, E.: Space-time discontinuous Galerkin method for dynamics of solids. Commun. Numer. Methods Eng. 24, 1887–1907 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  3. Almeida, R., Malinowska, A.B., Torres, D.F.M.: A fractional calculus of variations for multiple integrals with application to vibrating string. J. Math. Phys. 51, 033503 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  4. Auld, B.A.: Acoustic Fields and Waves in Solids. Krieger, Melbourne (1990)

    Google Scholar 

  5. Balankin, A.S.: Stresses and strains in a deformable fractal medium and its fractal continuum model. Phys. Lett. A 377, 2535–2541 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  6. Balankin, A.S., Elizarraraz, E.: Hydrodynamics of fractal continuum flow. Phys. Rev. E 85, 025302(R) (2012)

    Article  ADS  Google Scholar 

  7. Bazant, Z.P., Yavari, A.: Is the cause of size effect on structural strength fractal or energetic-statistical? Eng. Fract. Mech. 72, 1–31 (2005)

    Article  Google Scholar 

  8. Calcagni, G.: Geometry and field theory in multi-fractional spacetime. J. High Energy Phys. 1, 65 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  9. Carpinteri, A., Chiaia, B., Cornetti, P.: Static-kinematic duality and the principle of virtual work in the mechanics of fractal media. Comput. Methods Appl. Mech. Eng. 191, 3–19 (2001)

    Article  ADS  MATH  Google Scholar 

  10. Carpinteri, A., Chiaia, B., Cornetti, P.: The elastic problem for fractal media: basic theory and finite element formulation. Comput. Struct. 82, 499–508 (2004)

    Article  Google Scholar 

  11. Carpinteri, A., Cornetti, P., Sapora, A., Paola, M.D., Zingales, M.: Fractional calculus in solid mechanics: local versus non-local approach. Phys. Scr. 136, 014003 (2009)

    Article  Google Scholar 

  12. Cotrill-Shepherd, K., Naber, M.: Fractional differential forms. J. Math. Phys. 42, 2203–2212 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  13. Cottone, G., Paola, M.D., Zingales, M.: Elastic waves propagation in 1d fractional non-local continuum. Physica E 42, 95–103 (2009)

    Article  ADS  Google Scholar 

  14. Demmie, P.N., Ostoja-Starzewski, M.: Waves in fractal media. J. Elast. 104, 187–204 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  15. Ding, H.F., Zhang, Y.X.: New numerical methods for the Riesz space fractional partial differential equations. Comput. Math. Appl. 63, 1135–1146 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  16. Drapaca, C.S., Sivaloganathan, S.: A fractional model of continuum mechanics. J. Elast. 107, 105–123 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  17. Drumheller, D.S.: Introduction to Wave Propagation in Nonlinear Fluids and Solids. Cambridge University Press, Cambridge (1998)

    Book  Google Scholar 

  18. Epstein, M., Adeeb, M.: The stiffness of self-similar fractals. Int. J. Solids Struct. 45, 3238–3254 (2008)

    Article  MATH  Google Scholar 

  19. Eringen, A.C.: Mechanics of Continua. Wiley, New York (1967)

    MATH  Google Scholar 

  20. Eringen, A.C.: Nonlocal Continuum Field Theories. Springer, New York (2002)

    MATH  Google Scholar 

  21. Fan, H.L., Jin, F.N., Fang, D.N.: Mechanical properties of hierarchical cellular materials. Part I: Analysis. Compos. Sci. Technol. 68, 3380–3387 (2008)

    Article  Google Scholar 

  22. Fix, G.J., Roop, J.P.: Least squares finite-element solution of a fractional order two-point boundary value problem. Comput. Math. Appl. 48, 1017–1033 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  23. Hatami-Marbini, H., Picu, R.C.: Heterogeneous long-range correlated deformation of semi-flexible random fiber networks. Phys. Rev. E 80, 046703 (2009)

    Article  ADS  Google Scholar 

  24. Hilfer, R.: Threefold introduction to fractional derivatives. In: Klages, R., Radons, G., Sokolov, I.M. (eds.) Anomalous Transport: Foundations and Applications, pp. 17–73. Wiley, New York (2008)

    Chapter  Google Scholar 

  25. Jumarie, G.: On the representation of fractional brownian motion as an integral with respect to (dt)a. Appl. Math. Lett. 18, 739–748 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  26. Jumarie, G.: From lagrangian mechanics fractal in space to space fractal Schrodinger’s equation via fractional Taylor’s series. Chaos Solitons Fractals 41, 1590–1604 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  27. Jumarie, G.: An approach to differential geometry of fractional order via modified Riemann-Liouville derivative. Acta Math. Sin. 28, 1741–1768 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  28. Kolwankar, K.M.: Studies of fractal structures and processes using methods of fractional calculus. Ph.D. thesis, University of Pune, Pune, India (1998)

  29. Lazopoulos, K.A.: Non-local continuum mechanics and fractional calculus. Mech. Res. Commun. 33, 753–757 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  30. Ma, H.S., Prevost, J.H., Sherer, G.W.: Elasticity of DLCA model gels with loops. Int. J. Solids Struct. 39, 4605–4616 (2002)

    Article  MATH  Google Scholar 

  31. Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity. Imperial College Press, London (2010)

    Book  MATH  Google Scholar 

  32. Mandelbrot, B.B.: The Fractal Geometry of Nature. W.H. Freeman, Berlin (1982)

    MATH  Google Scholar 

  33. Michelitsch, T.M., Maugin, G.A., Rahman, M., Derogar, S., Nowakowski, A.F., Nicolleau, F.C.G.A.: An approach to generalized one-dimensional self-similar elasticity. Int. J. Eng. Sci. 61, 103–111 (2012)

    Article  MathSciNet  Google Scholar 

  34. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)

    MATH  Google Scholar 

  35. Nemat-Nasser, S., Hori, M.: Micromechanics: Overall Properties of Heterogeneous Materials. Elsevier, Amsterdam (1998)

    Google Scholar 

  36. Norris, A., Shuvalov, A.L., Kutsenko, A.A.: Analytical formulation of three-dimensional dynamic homogenization for periodic elastic systems. Proc. R. Soc. A 468, 1629–1651 (2012). doi:10.1098/rspa.2011.0698

    Article  ADS  MathSciNet  Google Scholar 

  37. Odzijewicz, T., Malinowska, A.B., Torres, D.F.M.: Generalized fractional calculus with applications to the calculus of variations. Comput. Math. Appl. 64, 3351–3366 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  38. Oldham, K.B., Spanier, J.: The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order. Dover, New York (2006)

    Google Scholar 

  39. Ostoja-Starzewski, M.: Towards thermoelasticity of fractal media. J. Therm. Stresses 30, 889–896 (2007)

    Article  Google Scholar 

  40. Paola, M.D., Zingales, M.: Long-range cohesive interactions of non-local continuum faced by fractional calculus. Int. J. Solids Struct. 45, 5642–5659 (2008)

    Article  MATH  Google Scholar 

  41. Plona, T.J.: Observation of a second bulk compressional wave in a porous medium at ultrasonic frequencies. Appl. Phys. Lett. 36, 259–261 (1980)

    Article  ADS  Google Scholar 

  42. Ren, F.Y., Yu, Z.G., Mehaute, A., Nigmatullin, R.R.: The relationship between the fractional integral and the fractal structure of a memory set. Physica A 246, 419–429 (1997)

    Article  ADS  Google Scholar 

  43. Ren, F.Y., Liang, J.R., Wang, X.T., Qiu, W.Y.: Integrals and derivatives on net fractals. Chaos Solitons Fractals 16, 107–117 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  44. Rossikhin, Y.A., Shitikova, M.V.: Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids. Appl. Mech. Rev. 50(1), 15–67 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  45. Sahimi, M.: Linear and nonlinear, scalar and vector transport processes in heterogeneous media: Fractals, percolation, and scaling laws. Chem. Eng. J. 64, 21–44 (1996)

    Google Scholar 

  46. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon & Breach, New York (1993)

    MATH  Google Scholar 

  47. Sapora, A., Cornetti, P., Carpinteri, A.: Wave propagation in nonlocal elastic continua modelled by a fractional calculus approach. Commun. Nonlinear Sci. Numer. Simul. 18, 63–74 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  48. Singh, S.J., Chatterjee, A.: Galerkin projections and finite elements for fractional order derivatives. Nonlinear Dyn. 45, 183–206 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  49. Tang, H.P., Wang, J.Z., Zhu, J.L., Ao, Q.B., Wang, J.Y., Yang, B.J., Li, Y.N.: Fractal dimension of pore-structure of porous metal materials made by stainless steel powder. Powder Technol. 217, 383–387 (2012)

    Article  Google Scholar 

  50. Tarasov, V.: Fractional vector calculus and fractional Maxwell’s equations. Ann. Phys. 323, 2756–2778 (2008)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  51. Tarasov, V.E.: Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media. Springer, Berlin (2010)

    Book  Google Scholar 

  52. Tarasov, V., Zaslavsky, G.M.: Dynamic with low-level fractionality. Physica A 368, 399–415 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  53. Willis, J.R.: The construction of effective relations in a composite. C. R. Mech. 340, 181–192 (2012)

    Article  Google Scholar 

  54. Wyss, H.M., Deliormanli, A.M., Tervoort, E., Gauckler, L.J.: Influence of microstructure on the rheological behavior of dense particle gels. AIChE J. 51, 134–141 (2005)

    Article  Google Scholar 

  55. Yang, Q., Liu, F., Turner, I.: Numerical methods for fractional partial differential equations with Riesz space fractional derivatives. Appl. Math. Model. 34, 200–218 (2010)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

Author is grateful to Prof. Vasily Tarasov from Moscow State University-Russia, Prof. Dimitru Baleanu from Çankaya University-Turkey and Prof. Guy Jumarie from University of Quebec at Montreal-Canada for the suggestions and discussions. Computing resources used in this work were provided by the National Center for High Performance Computing of Turkey (UYBHM) under grant number 1001932012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hüseyin Gökmen Aksoy.

Appendices

Appendix A: Derivation of Equilibrium Equation for Fractal Media

Let us consider a body occupying a space Ω α embedded in Euclid space such that Ω αΩ and \(\alpha\in\mathbb{R}^{+}\) is the Hausdorff dimension or box counting dimension of the quasi-fractal space Ω α. S α denotes the closed boundary of Ω α and n is the unit outward normal vector to S α. The conservation of linear momentum can be written as

$$\begin{aligned} \begin{array}{lll} \int\rho\ddot{\mathbf{u}}d\varOmega^\alpha=\int\boldsymbol {\sigma}\cdot\mathbf{n}dS^\alpha+\int\mathbf{b}d\varOmega^\alpha. \end{array} \end{aligned}$$
(28)

The first term on the right side of Eq. (28) can be written as follows by using the Gauss divergence theorem for fractional vector operators given in [3]

$$\begin{aligned} \int\boldsymbol{\sigma}\cdot\mathbf{n}dS^\alpha=\int \nabla ^{\alpha}\cdot\boldsymbol{\sigma}d\varOmega^\alpha. \end{aligned}$$
(29)

Assuming that dependent variables are continuous in Ω α and shrinking Ω α to a point, similar to what is done in classical continuum mechanics [19], one can write the differential form of the equilibrium equation for fractal media as

$$\begin{aligned} \begin{array}{lll} \rho\ddot{\mathbf{u}}=\nabla^{\alpha}\cdot\boldsymbol{\sigma }+\mathbf{b}. \end{array} \end{aligned}$$
(30)

Appendix B: Derivation of Strain Tensor

Here, the strain tensor is derived for small deformations. We assume that the deformation is 2 dimensional for simplicity; extending it to 3 dimensions is straightforward.

2.1 B.1 Extensional Strain

Let u(x) be the displacement field, where u={u 1,u 2} and x={x 1,x 2}. \(\mathbf{x^{\alpha}}=\{x_{1}^{\alpha},x_{2}^{\alpha}\}\) are the coordinates in fractal space. Let us consider the differential element occupied by the volume Ω α.

Using Lemma 3.1 in [25], the strain in the x 1 direction can be written as

$$\begin{aligned} \varepsilon_{11}=\frac {\partial u_1}{\partial x_1}=\lim _{\Delta x_1\rightarrow0}\frac{\Delta u_1}{\Delta x_1}=\lim_{\Delta x_1\rightarrow0} \frac{\Delta^\alpha u_1}{(\Delta x_1)^\alpha} \frac{(\Delta x_1)^{\alpha-1}}{\varGamma(1+\alpha)}=C(L,\alpha) \frac{\partial u_1}{\partial x^\alpha_1}. \end{aligned}$$
(31)

In Eq. (31) coefficient C(L,α) is the constant which relates the fractional derivative to the fractal media [43].

2.2 B.2 Shear Strain

The shear strain is the sum of the angles between the edges of the differential element and the coordinate axis. For small deformations the relation between the fractional derivatives and the shear strain can be written as

$$\begin{aligned} \varepsilon_{12}=\frac{\partial u_1}{\partial x_2}+ \frac{\partial u_2}{\partial x_1}=C(L,\alpha) \biggl(\frac{\partial^\alpha u_1}{\partial x^\alpha_2}+\frac{\partial^\alpha u_2}{\partial x^\alpha_1} \biggr). \end{aligned}$$
(32)

Appendix C: Bilinear and Linear Operators for the Discontinuous Galerkin Method

Linear operator and bilinear operators for the discontinuous Galerkin method with local and nonlocal fractional derivatives can be written, respectively, as

$$\begin{aligned} L(w) =&\sum_{\varOmega^{\alpha}_e\in\mathcal{P}_h}\int_{\varOmega^{\alpha}_e} w \rho\mathbf{b}d\varOmega^{\alpha}_e+\int_{\varGamma^{\alpha}_D}\nabla^{\alpha} w\cdot\mathbf{n}~\bar{ \mathbf{u}}d\varGamma^{\alpha}_D+\int_{\varGamma_N}w \bar{\mathbf{t}}d\varGamma_{N}, \end{aligned}$$
(33)
$$\begin{aligned} A_L(\mathbf{u},w ) =&\sum_{\varOmega^{\alpha}_e\in\mathcal{P}_h} \biggl\{ \int_{\varOmega^{\alpha}_e} \nabla^{\alpha} w \cdot\boldsymbol{\sigma}d\varOmega^{\alpha}_e \biggr\} -\int_{\varGamma^{\alpha}_{\mathrm{int}}}c_3(\alpha,\mathbf{x})[w]\langle \boldsymbol{\sigma}\rangle\cdot\mathbf{n}~d\varGamma^{\alpha}_{\mathrm{int}} \\ &{}+\int_{\varGamma^{\alpha}_{\mathrm{int}}}\bigl\langle \boldsymbol{\sigma} \bigl( \nabla^{\alpha} w \bigr)\bigr\rangle \cdot\mathbf{n}[\mathbf{u}]d \varGamma^{\alpha}_{\mathrm{int}} -\int_{\varGamma^{\alpha}_{D}}w\boldsymbol{\sigma}\cdot\mathbf{n}~d \varGamma^{\alpha}_{D} +\int_{\varGamma^{\alpha}_{D}}\boldsymbol{\sigma} \bigl(\nabla^{\alpha} w \bigr) \cdot\mathbf{n}~\mathbf{u}d\varGamma^{\alpha}_{D} \\ &{}+\mu\frac{\gamma_\mu}{h}\int_{\varGamma^{\alpha}_{\mathrm{int}}}[w]\cdot[\mathbf{u}]d \varGamma^{\alpha}_{\mathrm{int}} +\int_{\varGamma^{\alpha}_{\mathrm{int}}} \biggl[\lambda\frac{\gamma^{\alpha}_\lambda}{h} w \biggr] \cdot\mathbf{n}[\mathbf{u}]\cdot\mathbf{n}d\varGamma^{\alpha}_{\mathrm{int}} \\ &{}+\int_{\varGamma^{\alpha}_{D}}\mu\frac{\gamma_\mu}{h}w\cdot\mathbf{u}d \varGamma^{\alpha}_{D} +\int_{\varGamma^{\alpha}_{D}}\lambda\frac{\gamma_\lambda}{h}w \cdot\mathbf{n}~ \mathbf{u}\cdot\mathbf{n}d\varGamma^{\alpha}_{D}, \end{aligned}$$
(34)
$$\begin{aligned} A_{NL}(\mathbf{u},w ) =&\sum_{\varOmega_e\in\mathcal{P}_h} \biggl\{ \int_{\varOmega^{\alpha}_e} \nabla^{\alpha} w \cdot\boldsymbol{\sigma}d\varOmega^{\alpha}_e\biggr\} -\int_{\varGamma^{\alpha}_{\mathrm{int}}}\varGamma^2(\alpha+1)[w]\langle \boldsymbol{\sigma}\rangle\cdot\mathbf{n}~d\varGamma^{\alpha}_{\mathrm{int}} \\ &{}+\int_{\varGamma^{\alpha}_{\mathrm{int}}}\bigl\langle \boldsymbol{\sigma} \bigl( \nabla^{\alpha} w \bigr)\bigr\rangle \cdot\mathbf{n}[\mathbf{u}]d \varGamma^{\alpha}_{\mathrm{int}} -\int_{\varGamma^{\alpha}_{D}}w\boldsymbol{\sigma}\cdot\mathbf{n}~d \varGamma^{\alpha}_{D} +\int_{\varGamma^{\alpha}_{D}}\boldsymbol{\sigma} \bigl(\nabla^{\alpha} w \bigr) \cdot\mathbf{n}~\mathbf{u}d\varGamma^{\alpha}_{D} \\ &{}+\mu\frac{\gamma_\mu}{h}\int_{\varGamma^{\alpha}_{\mathrm{int}}}[w]\cdot[\mathbf{u}]d \varGamma^{\alpha}_{\mathrm{int}} +\int_{\varGamma^{\alpha}_{\mathrm{int}}} \biggl[\lambda\frac{\gamma^{\alpha}_\lambda}{h} w \biggr] \cdot\mathbf{n}[\mathbf{u}]\cdot\mathbf{n}d\varGamma^{\alpha}_{\mathrm{int}} \\ &{}+\int_{\varGamma^{\alpha}_{D}}\mu\frac{\gamma_\mu}{h}w\cdot\mathbf{u}d \varGamma^{\alpha}_{D} +\int_{\varGamma^{\alpha}_{D}}\lambda\frac{\gamma_\lambda}{h}w \cdot\mathbf{n}~ \mathbf{u}\cdot\mathbf{n}d\varGamma^{\alpha}_{D}. \end{aligned}$$
(35)

Note that these last two equations define bilinear operators for the models based on local and nonlocal fractional derivatives, respectively. h is a parameter given by

$$\begin{aligned} h= \begin{cases} 2 (\frac{\mathit{length}(\varGamma)}{\mathit{area}(\varOmega_e)}+\frac{\mathit{length}(\varGamma)}{\mathit{area}(\varOmega_{nb})} )^{-1} & \mbox{for }\varGamma\subset\varGamma_e\cap\varGamma_{nb}\\ \frac{\mathit{area}(\varOmega_e)}{\mathit{length}(\varGamma_{e})} & \mbox{for }\varGamma\subset\varGamma_e\cap\partial\varOmega. \end{cases} \end{aligned}$$
(36)

In Eqs. (34) and (35), γ μ and γ λ are penalty parameters and w is a weight function. Difference and averaging operators are defined as follows

$$\begin{aligned}{} [\phi] =& (\phi_{nb}-\phi_{e}), \end{aligned}$$
(37)
$$\begin{aligned} \langle\phi\rangle =& (\phi_{nb}+\phi_{e})/2. \end{aligned}$$
(38)

Appendix D: Numerical Implementation

Numerical implementation of Eq. (27) is done by first discretizing the momentum equation in space by using the bilinear and linear operators which are given in Eqs. (33), (34) and (35). Then the resulting systems of ordinary differential equations are solved by using the time discontinuous Galerkin method.

4.1 D.3 Space Discretization

Let u h(t,x) be the approximate solution for u(t,X), where \(\mathbf{u}^{h}(t,\mathbf{x})=\sum_{i} \mathbf{u}^{h}_{i}(t) \mathbf{N}_{i}\) and summation is carried out over the nodes of elements and N i is the base function. The bilinear operator can be written as follows after evaluating the integrals

$$\begin{aligned} A \bigl(\mathbf{u}^h(t,\mathbf{x}),\mathbf{w} \bigr)=\sum _{e=1}^N \bigl(\mathbf {K_e} \mathbf{u}^h_e-\mathbf{F_e} \bigl( \mathbf{u}^h_e \bigr)-\mathbf {F_{nb}} \bigl( \mathbf{u}^h_{nb} \bigr) \bigr). \end{aligned}$$
(39)

In the above equation, \(\mathbf{K_{e}}\) is the element stiffness matrix. \(\mathbf{F_{e}}\) and \(\mathbf{F_{nb}}\) arises from the surface integrals along the element boundaries and can be regarded as force vectors acting on the surface of the element due to the internal and external displacements. For notational convenience, the superscript h is dropped for the following equations. The fractional derivatives of the base functions are evaluated analytically.

Body forces and boundary integrals subject to boundary conditions can be written as

$$\begin{aligned} \sum_{e=1}^N\mathbf{F_{b}} =&\sum_{\varOmega_e}\int_{\varOmega^{\alpha}_e}w \rho\mathbf{b}d\varOmega^{\alpha}_e +\lambda\sum_{\varGamma_e\in\varGamma_D}\int_{\varGamma_e}\nabla^{\alpha}w\cdot\mathbf{n}\hspace{1mm}\bar{\mathbf{u}}d\varGamma^{\alpha}_e +\sum_{\varGamma_e\in\varGamma_{N}}\int_{\varGamma_e}w\bar{\mathbf{t}}d\varGamma^\alpha_{e}. \end{aligned}$$
(40)

Then one can write the semi-discrete balance equation as follows

$$\begin{aligned} \sum_{e=1}^N \bigl( \mathbf{M_e}\ddot{\mathbf{u}}_e+\mathbf{K_e} \mathbf {u}_e-\mathbf{F_e}(\mathbf{u}_e)- \mathbf{F_{nb}}(\mathbf {u}_{nb})-\mathbf{F_{ext}} \bigr)=0. \end{aligned}$$
(41)

In the above equations \(\mathbf{M_{e}}\) is the element mass matrix and \(\mathbf{F_{ext}}=\mathbf{F_{b}}+\mathbf{F_{nb}}\). The semi-discrete balance equation can be written in the more compact form

$$\begin{aligned} \sum_{e=1}^N( \mathbf{M_e}\ddot{\mathbf{u}}_e+\tilde{\mathbf{K}}_{\mathbf{e}}\mathbf{u}_e-\mathbf{F_{ext}})=0, \end{aligned}$$
(42)

where \(\tilde{\mathbf{K}}_{\mathbf{e}}\) is the modified element stiffness matrix which is defined as \(\tilde{\mathbf{K}}_{\mathbf{e}}=\mathbf{K}_{\mathbf{e}}+\frac{\partial\mathbf{F}_{\mathbf{e}}}{\partial\mathbf{u}_{e}}\).

Equation (42) can be solved element by element by using the block Gauss-Seidel method along with the time integration method.

4.2 D.4 Time Integration

The time discontinuous Galerkin method (TDG) is used for the time integration. In the application of TDG, a double field formulation is used. The double field formulation consist combining the velocity and equation of motion in the form

$$\begin{aligned} &\int_I \mathbf{w}_t\left (\left [ \begin{array}{c@{\quad}c} \tilde{\mathbf{K}}&0\\ 0&\mathbf{M} \end{array} \right ] \left [ \begin{array}{c} \dot{\mathbf{u}}\\ \dot{\mathbf{v}} \end{array} \right ]+\left [ \begin{array}{c@{\quad}c} 0&-\tilde{\mathbf{K}}\\ \tilde{\mathbf{K}}&0 \end{array} \right ] \left [ \begin{array}{c} \mathbf{u}\\ \mathbf{v} \end{array} \right ] \right )dt +\mathbf{w}_t \bigl(t^+_n \bigr) \left [ \begin{array}{c@{\quad}c} \tilde{\mathbf{K}}&0\\ 0&\mathbf{M} \end{array} \right ] \left [ \begin{array}{c} \mathbf{u}(t^+_n)\\ \mathbf{v}(t^+_n) \end{array} \right ] \\ &\qquad {}-\mathbf{w}_t \bigl(t^+_n \bigr) \left [ \begin{array}{c@{\quad}c} \tilde{\mathbf{K}}&0\\ 0&\mathbf{M} \end{array} \right ]\left [ \begin{array}{c} \mathbf{u}(t^-_n)\\ \mathbf{v}(t^-_n) \end{array} \right ] \\ &\quad {}=\int_I \mathbf{w}_t\left [ \begin{array}{c} 0\\ \mathbf{F} \end{array} \right ] dt. \end{aligned}$$
(43)

In the above equations the subscripts of the vectors and matrices are dropped for the sake of simplicity. Thus, in the following section no subscript will be used to show the element-wise values. In Eq. (43) w t is the weight function in time. We use 1st order Lagrange polynomials a base function. After evaluating the integrals in Eq. (43), we reach the following linear equation system

$$\begin{aligned} \left [ \begin{array}{c@{\quad}c@{\quad}c@{\quad}c} \frac{1}{2}\tilde{\mathbf{K}}&\frac{1}{2}\tilde{\mathbf{K}}&\frac{-1}{3}\mbox{dt} \tilde{\mathbf{K}}&\frac{1}{6}\mbox{dt} \tilde{\mathbf{K}}\\ \frac{-1}{2}\tilde{\mathbf{K}}&\frac{1}{2}\tilde{\mathbf{K}}&\frac{-1}{6}\mbox{dt} \tilde{\mathbf{K}}&\frac{-1}{3}\mbox{dt} \tilde{\mathbf{K}}\\ \frac{1}{3}\mbox{dt}\tilde{\mathbf{K}}&\frac{1}{6}\mbox{dt}\tilde{\mathbf{K}}&\frac{1}{2} \mathbf{M}&\frac{1}{2}\mathbf{M}\\ \frac{1}{6}\mbox{dt}\tilde{\mathbf{K}}&\frac{1}{3}\mbox{dt}\tilde{\mathbf{K}}&\frac{-1}{2}\mathbf{M}&\frac{1}{2}\mathbf{M} \end{array} \right ] \left [ \begin{array}{c} \mathbf{u}^+_{n}\\ \mathbf{u}^-_{n+1}\\ \mathbf{v}^+_{n}\\ \mathbf{v}^-_{n+1}\\ \end{array} \right ] =\left [ \begin{array}{c} \tilde{\mathbf{K}} \mathbf{u}_{n}^-\\ 0\\ \mathbf{F_{n}}+ \mathbf{M} \mathbf{v}_{n}^-\\ \mathbf{F_{n+1}}\\ \end{array} \right ]. \end{aligned}$$
(44)

Equation (44) is solved for each element sequentially as is done in the block Gauss-Seidel method in order to decrease the computational cost.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aksoy, H.G. Wave Propagation in Heterogeneous Media with Local and Nonlocal Material Behavior. J Elast 122, 1–25 (2016). https://doi.org/10.1007/s10659-015-9530-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-015-9530-9

Keywords

Mathematics Subject Classification

Navigation