Skip to main content
Log in

Effect of Thermomechanical Loading on an Edge Crack of Finite Length in an Infinite Orthotropic Strip

  • Published:
Mechanics of Composite Materials Aims and scope

The purpose of this article is to determine the effect of thermal loadings on the stress intensity factor of an edge crack of finite length in an orthotropic infinite strip of finite thickness under mechanical loading. Analytical expressions of the stress intensity factor at the crack tip in point and arbitrary constant loadings are found. Numerical values of the factor at any arbitrary location on the crack face due to mechanical loading and effects of thermal loadings are computed for various crack lengths in an orthotropic material composite, and the results are presented in the form of graphs. The effects of thermal conductivity parameters on the stress intensity factor for different particular cases are also shown graphically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  1. V. Kushnevsky, G. Wacker, A. Chate, and A. K. Bledzki, “The effect of interphase on residual thermal stresses. 1.Single fiber composite materials,” Mech. Compos. Mater., 30, No. 5, 417-425 (1995).

    Article  Google Scholar 

  2. G. L. Golewski and T. Sadowski, “A failure analysis of concrete composites incorporating fly ash during torsional loading,” Compos. Struct., 183, 527-535(2018).

    Article  Google Scholar 

  3. R. Talreja, “Physical modelling of failure in composites,” Phil. Trans. R. Soc. A, 374 (2016), DOI: https://doi.org/10.1098/rsta.2015.0280.

  4. G. Groza, A. M. Mitu, N. Pop, and T. Sireteanu, “Transverse vibrations analysis of a beam with degrading hysteretic behavior by using Euler-Bernoulli beam model,” An. St. Univ. Ovidius Constanta, 26, No. 1, 125-139 (2018).

    Google Scholar 

  5. G. L. Golewski, “Generalized fracture toughness and compressive strength of sustainable concrete including low calcium fly ash”, Materials, 10, No. 12, (2017), DOI: https://doi.org/10.3390/ma10121393.

  6. G. L. Golewski and T. Sadowski, “The fracture toughness the KIIIc of concretes with F fly ash (FA) additive,” Construct. Build. Mater., 143, 444-454 (2017).

    Article  Google Scholar 

  7. G. Abderezak, “Internal structural failure analysis of anisotropic composite materials under external solicitations using “smart” materials,” Adv. Theor. Appl. Mech., 7, 21-30 (2014).

    Article  Google Scholar 

  8. Z. Hashin, “Failure criteria for unidirectional fiber composites,” J. Appl. Mech. 47, 329-334 (1980).

    Article  Google Scholar 

  9. S. W. Tsai and E. M. Wu, “A general theory of strength for anisotropic materials,” J. Comp. Mater. 5, 58-80 (1971).

    Article  Google Scholar 

  10. V. E. Petrova, “Interaction between a main crack and inclusions of a given orientation,” Mech. Compos. Mater., 24, No. 3, 288-294 (1988).

    Article  Google Scholar 

  11. S. E. Hamdi, R. M. Pitti, and F. Dubois, “Temperature variation effect on crack growth in orthotropic medium: Finite element formulation for the visco-elastic behavior in thermal cracked wood-based materials,” Int. J. Solid Struct., 115-116, 1-13 (2017).

  12. J. Sladek, V. Sladek, M. Repka, and C. L. Tan, “Evaluation of the T-stress for cracks in functionally graded materials by the FEM,” Theoritical Appl. Fract. Mech., 86, 332-341 (2016).

    Article  Google Scholar 

  13. S. Das and L. Debnath, “On a moving Griffith crack at the interface of two bonded dissimilar orthotropic half-planes,” ZAMM- J. Appl. Math. Mech., 81, 281-287 (2001).

    Article  Google Scholar 

  14. P. K. Satapathy and H. Parhi, “Stresses in an orthotropic strip containing a Griffith crack,” Int. J. Eng. Sci., 16, 147-154 (1978).

    Article  Google Scholar 

  15. P. S. Kushwaha, “Stress intensity factor in orthotropic medium in the presence of symmetrical body forces,” Int. J. Fract., 14, 443-451 (1978).

    Article  Google Scholar 

  16. S. Das, B. Patra, and L. Debnath, “On elastodynamical problem of interfacial Griffith cracks in composite media,” Int. J. Eng. Sci., 42, 735-752 (2004).

    Article  Google Scholar 

  17. J. De and B. Patra, “Edge crack in orthotropic elastic half-plane,” Ind. J. Pure Appl. Math., 20, 923-930 (1989).

    Google Scholar 

  18. Y. M. Tasi, “Transversaly isotropic thermoelastic problem of uniform heat flow distributed by a penny-shaped crack,” J. Thermal Stresses, 6, 379-389 (1983).

    Article  Google Scholar 

  19. F. A. Struta and J. R. Barber, “Thermal stresses due to a plane crack in general anisotropic material,” J. Appl. Mech., 55, 372-376 (1988).

    Article  Google Scholar 

  20. B. Mukhopadhyay and R. K. Bera, “Effect of temprature on the edge crack in orthotropic elastic half-plane,” Computars Math. Appl., 24, 3-10 (1992).

    Article  Google Scholar 

  21. R. Ishida, “On a single edge crack problem in an elastic strip,” Archive Appl. Mech., 59, 296-303 (1989).

    Google Scholar 

  22. Q. Wang, X. Ji., and Y. Wang, “A note on edge cracks in an orthotropic infinite strip,” Int. J. Fract., 5, R37-R41 (1996).

    Article  Google Scholar 

  23. M. S. Matnuly and D. M. Nassar, “Elastostatic analysis of edge cracked orthotropic plates,” Acta Mech., 165, 17-25 (2003).

    Article  Google Scholar 

  24. A. Y. Akoz and T. R. Tauchert, “Thermal stresses in an orthotropic elastic semi-space,” J. Appl. Mech., 39, 87-90 (1972).

    Article  Google Scholar 

  25. X. S. Zhang, “The general solution to an infinite orthotropic plate with a cruciform crack under arbitrary anti-plane shear stresses,” Eng. Fract. Mech., 39, 229-233 (1991).

    Article  Google Scholar 

  26. J. De and B. Batra, “Thermoelastic problem of an orthotropic-elastic plane containing a cruciform crack,” Int. J. Eng. Sci., 30, 1041-1048 (1992).

    Article  Google Scholar 

  27. S. Das and L. Debnath, “Study of a static cruciform crack problem in an orthotropic elastic plane,” Computars Math. Appl., 40, 569-575 (2000).

    Article  Google Scholar 

  28. L. M. Keer, S. N. Nasser, and A. Oranratnachai, “Spontaneous growth of interacting cracks in a cruciform pattern,” Eng. Fract. Mech., 13, 15-29 (1980,).

    Article  Google Scholar 

  29. M. K. Kassir and K.K. Bandopadhyay, “Impact response of a cracked orthotropic medium,” ASME J. Appl. Mech., 50, 630-636 (1983).

    Article  Google Scholar 

  30. V. P. Netrebko, “Stress intensity factors near the cracks on the edges of openings in composite plates,” Mech. Compos. Mater., 37, No. 2, 107-114 (2001).

    Article  Google Scholar 

  31. M. Kh. Shorshorov, L. V. Vinogradov, and L. M. Ustinov, “Computing stress-intensity factors for cracks located at the interface between different media by the method of sections,” Mech. Composite Mater., 15, No. 6, 669-676 (1980).

    Article  Google Scholar 

  32. M. Marin and E. M. Craciun, “Uniqueness results for a boundary value problem in dipolar thermo-elasticity to model composite materials,” Composites: Part B: Eng., 126, 27-37 (2017).

    Article  Google Scholar 

  33. V. N. Burlayenko, H. Altenbach, T. Sadowski, and S. D. Dimitrova, “Computational simulations of thermal shock cracking by the virtual crack closure technique in a functionally graded plate,” Comp. Mater. Sci., 116, 11-21 (2016).

    Article  Google Scholar 

  34. V. Petrova, V. Tamuzs, and N. Romalis, “A survey of macro-microcrack interaction problems,” Appl. Mech. Rev., 53, No. 5, 117-146 (2000).

    Article  Google Scholar 

  35. R. B. Rikards, and A. K. Chate, “Elastic properties of a composite with anisotropic fibers,” Mech. Compos. Mater. 16, No. 1, 16-22 (1980).

    Article  Google Scholar 

  36. R. Janeliukstis, S. Ruchevskis, and A. Chate, “Classification model for damage localization in a plate structure,” Mech. Compos. Mater., 53, 725-736 (2018).

    Article  Google Scholar 

  37. H. F. Bueckner, “A novel principle for the computation of stress intensity factor,” ZAMM- J. Math. Mech., 50, 529-546 (1970).

    Google Scholar 

  38. H. F. Bueckner, “Field singularities and related integral representation,” Mechanics of Fracture-1, Noordhodd Leyden, The Netherlands, 239-319 (1973).

  39. J. R. Rice, “Weight function theory for three-dimensional elastic crack analysis,” ASTM-STP, Proc. 20th Nat. Symp. on Fracture Mechanics, ASTM-STP 1020, Philadelphia, 29-57 (1989).

  40. S. Das, “Weight function for a crack in a two dimensional under impact loading,” Int. J. Appl. Mech. Eng., 11, 15-28 (2006).

    Google Scholar 

  41. S. Das, “Weight function for an edge crack in an infinite orthotropic strip under normal point loading,” ZAMM- J. Math. Mech., 90, 271-277 (2010).

    Article  Google Scholar 

  42. S. Mukherjee and S. Das, “Weight function for a crack in an orthotropic medium under normal impact loading,” Int. J. Appl. Mech. Eng., 11, 915-928 (2006).

    Google Scholar 

  43. R. B. Hetnarski and J. Ignaczak, The Mathematical Theory of Elasticity, 2nd edition, CRC Press, Boca Raton (2010).

    Google Scholar 

  44. F. G. Tricomi, “On the finite Hilbert transformation,” Quality J. Math., 2, 199-221 (1951).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E.-M. Craciun.

Additional information

Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 55, No. 3, pp. 409-424, May-June, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A., Das, S. & Craciun, EM. Effect of Thermomechanical Loading on an Edge Crack of Finite Length in an Infinite Orthotropic Strip. Mech Compos Mater 55, 285–296 (2019). https://doi.org/10.1007/s11029-019-09812-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-019-09812-1

Navigation