Skip to main content
Log in

Analyzing size effects in a cracked orthotropic layer under antiplane shear loading

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Scale-dependent stress intensity factors in an anti-plane cracked orthotropic material layer are evaluated using strain gradient theory. Both volumetric and surface strain gradient material characteristic lengths represented as l and \(l^{'}\), respectively, are employed to obtain semi-analytical solutions. The surface strain gradient effect is considered for both positive and negative \(l^{'}\) values. The layer edges are assumed stress-free and oriented parallel to the crack plane. The presence of orthotropy can either increase or decrease the stress intensity factors depending on if it is greater or smaller than unity. The volumetric strain gradient effect reduces the stress intensity factor and it is more pronounced for smaller layer thickness. It was found that the negative surface gradient leads to a more complaint crack, while the positive surface gradient increases crack stiffness. Overall, the surface gradient effect is less significant in comparison with the volumetric gradient effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Fleck, N., Hutchinson, J.: Strain Gradient Plasticity (Advances in Applied Mechanics), vol. 33. Elsevier, New York (1997)

    MATH  Google Scholar 

  2. Lam, D.C.C., Yang, F., Chong, A., Wang, J., Tong, P.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51(13), 1477–1508 (2003)

    MATH  Google Scholar 

  3. McFarland, A.W., Colton, J.S.: Role of material microstructure in plate stiffness with relevance to microcantilever sensors. J. Micromecha. Microeng. 15(10), 1060 (2005)

    Google Scholar 

  4. Forest, S.: Mechanics of generalized continua: construction by homogenizaton. Le Journal de Physique IV. 8(PR4): p. Pr4-39-Pr4-48 (1998)

  5. Forest, S.: Homogenization Methods and the Mechanics of Generalized continua, International Seminar on Geometry, Continuum and Microstructure, organized by G, pp. 28–29. Maugin, Paris (1997)

    Google Scholar 

  6. Mühlhaus, E.H.: Continuum Models for Materials with Microstructure. Wiley, New York (1995)

    MATH  Google Scholar 

  7. Forest, S.: Homogenization methods and mechanics of generalized continua-part 2. Theor. Appl. Mech. 28–29, 113–144 (2002)

    MATH  Google Scholar 

  8. Abali, B.E., Müller, W.H., dell’Isola, F.: Theory and computation of higher gradient elasticity theories based on action principles. Arch. Appl. Mech. 87(14), 1495–1510 (2017)

    Google Scholar 

  9. Auffray, N., Dell’Isola, F., Eremeyev, V., Madeo, A., Rosi, G.: Analytical continuum mechanics à la Hamilton–Piola least action principle for second gradient continua and capillary fluids. Math. Mech. Solids 20(9), 375–417 (2015)

    MathSciNet  MATH  Google Scholar 

  10. Pideri, C., Seppecher, P.: A second gradient material resulting from the homogenization of an heterogeneous linear elastic medium. Contin. Mech. Thermodyn. 9(10), 241–257 (1997)

    MathSciNet  MATH  Google Scholar 

  11. Bertram, A., Forest, S.: The thermodynamics of gradient elastoplasticity. Contin. Mech. Thermodyn. 26(8), 269–286 (2014)

    MathSciNet  MATH  Google Scholar 

  12. Alibert, J.J., Della Corte, A.: Second-gradient continua as homogenized limit of pantographic microstructured plates: a rigorous proof. Zeitschrift für angewandte Mathematik und Physik 66(10), 2855–2870 (2015)

    MathSciNet  MATH  Google Scholar 

  13. Dell’Isola, F., Andreaus, U., Placidi, L.: At the origins and in the vanguard of peridynamics, non-local and higher-gradient continuum mechanics: an underestimated and still topical contribution of Gabrio Piola. Math. Mech. Solids 20(13), 887–928 (2015)

    MathSciNet  MATH  Google Scholar 

  14. Fritzen, F., Forest, S., Böhlke, T., Kondo, D., Kanit, T.: Computational homogenization of elasto-plastic porous metals. Int. J. Plast. 29, 102–119 (2012)

    Google Scholar 

  15. Geers, M.G., Kouznetsova, V.G., Brekelmans, W.: Multi-scale computational homogenization: trends and challenges. J. Comput. Appl. Math. 234(12), 2175–2182 (2010)

    MATH  Google Scholar 

  16. Khakalo, S., Niiranen, J.: Form II of Mindlin’s second strain gradient theory of elasticity with a simplification: for materials and structures from nano-to macro-scales. Eur. J. Mech.-A/Solids 71, 292–319 (2018)

    MathSciNet  MATH  Google Scholar 

  17. Rahali, Y., Giorgio, I., Gnahhoffer, J., F. Dell’Isola, F.: Homogenization à la Piola produces second gradient continuum models for linear pantographic lattices. Int. J. Eng. Sci. 97, 148–172 (2015)

  18. Schröder, J., Neff, P., Balzani, D.: A variational approach for materially stable anisotropic hyperelasticity. Int. J. Solids Struct. 42(18), 4352–4371 (2005)

    MathSciNet  MATH  Google Scholar 

  19. Eringen, A.C., Edelen, D.: On nonlocal elasticity. Int. J. Eng. Sci. 10(8), 233–248 (1972)

    MathSciNet  MATH  Google Scholar 

  20. Yang, F., Chong, A., Lam, D.C.C., Tong, P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39(15), 2731–2743 (2002)

    MATH  Google Scholar 

  21. Aifantis, E.C.: On the role of gradients in the localization of deformation and fracture. Int. J. Eng. Sci. 30(15), 1279–1299 (1992)

    MATH  Google Scholar 

  22. Aifantis, E.C.: Update on a class of gradient theories. Mech. Mater. 35(3–6), 259–280 (2003)

    Google Scholar 

  23. Mindlin, R.D.: Microstructure in Linear Elasticity. Dept of Civil Engineering and Engineering Mechanics, Columbia Univ, New York (1963)

    Google Scholar 

  24. Mindlin, R.D.: Second gradient of strain and surface-tension in linear elasticity. Int. J. Solids Struct. 1(9), 417–438 (1965)

    Google Scholar 

  25. Vardoulakis, I., Exadaktylos, G., Aifantis, E.: Gradient elasticity with surface energy: mode-III crack problem. Int. J. Solids Struct. 33(33), 4531–4559 (1996)

    MATH  Google Scholar 

  26. Chan, Y.S., Paulino, G.H. Fannjiang, A.C.: Gradient elasticity theory for mode III fracture in functionally graded materials-part II: crack parallel to the material gradation. J. Appl. Mech. 75(11) (2008)

  27. Paulino, G.H., Fannjiang, A.C., Chan, Y.S.: Gradient elasticity theory for mode III fracture in functionally graded materials-part I: crack perpendicular to the material gradation. J. Appl. Mech. 70(9), 531–542 (2003)

    MATH  Google Scholar 

  28. Polizzotto, C.: A note on the higher order strain and stress tensors within deformation gradient elasticity theories: Physical interpretations and comparisons. Int. J. Solids Struct. 90, 116–121 (2016)

    Google Scholar 

  29. Aifantis, E.C.: A note on gradient elasticity and nonsingular crack fields. J. Mech. Behav. Mater. 20, 103–105 (2011)

    Google Scholar 

  30. Aifantis, E.C.: Internal length gradient (ILG) material mechanics across scales and disciplines. Advances in Applied Mechanics, pp. 1–110. Elsevier, Amsterdam (2016)

  31. Sulem, J., Vardoulakis, I.: Bifurcation Analysis in Geomechanics. CRC Press, Boca Raton (1995)

    Google Scholar 

  32. Giannakopoulos, A., Stamoulis, K.: Structural analysis of gradient elastic components. Int. J. Solids Struct. 44(15), 3440–3451 (2007)

    MATH  Google Scholar 

  33. Joseph, R.P., Wang, B.L., Samali, B.: Size effects on double cantilever beam fracture mechanics specimen based on strain gradient theory. Eng. Fract. Mech. 169, 309–320 (2017)

    Google Scholar 

  34. Joseph, R.P.: Scale-Dependent Fracture in Gradient Elastic Materials. Western Sydney University, Sydney (2018)

    Google Scholar 

  35. Joseph, R.P., Wang, B.L., Samali, B.: Strain gradient fracture in an anti-plane cracked material layer. Int. J. Solids Struct. 146, 214–223 (2018)

    Google Scholar 

  36. Joseph, R.P., Wang, B.L., Samali, B.: Large deformation and strain gradient fracture analysis of double cantilever beams with piezoelectric effect. J. Eng. Mech. 144(13), 04018071 (2018)

    Google Scholar 

  37. Joseph, R.P., Wang, B.L., Samali, B.: Size-dependent stress intensity factors in a gradient elastic double cantilever beam with surface effects. Arch. Appl. Mech. 88(15), 1815–1828 (2018)

    Google Scholar 

  38. Joseph, R.P., Chunwei, Zhang, Wang, B., Samali, B.: Fracture analysis of flexoelectric double cantilever beams based on the strain gradient theory. Compos. Struct. 202, 1322–1329 (2018)

    Google Scholar 

  39. Wang, G.F., Feng, X.Q., Wang, T.J., Gao, W.: Surface effects on the near-tip stresses for mode-I and mode-III cracks. J. Appl. Mech. 75(1) (2008)

  40. Fannjiang, A.C., Paulino, G.H., Chan, Y.S.: Strain gradient elasticity for antiplane shear cracks: a hypersingular integrodifferential equation approach. SIAM J. Appl. Math. 62(8), 1066–1091 (2002)

    MathSciNet  MATH  Google Scholar 

  41. Mousavi, S.M., Aifantis, E.: A note on dislocation-based mode III gradient elastic fracture mechanics. J. Mech. Behav. Mater. 24(3–4), 115–119 (2015)

    Google Scholar 

  42. Karimipour, I., Fotuhi, A.R.: Anti-plane analysis of an infinite plane with multiple cracks based on strain gradient theory. Acta Mechanica 228(10), 1793–1817 (2017)

    MathSciNet  MATH  Google Scholar 

  43. Yang, F.: Exact solution for a finite length crack in a strip under general antiplane loading. Int. J. Fract. 87(7), L57–L64 (1997)

    Google Scholar 

  44. Singh, B., Moodie, T.B.: Closed-form solutions for finite length crack moving in a strip under anti-plane shear stress. Acta Mechanica 38(1–2), 99–109 (1981)

    MathSciNet  MATH  Google Scholar 

  45. Tait, R., Moodie, T.B.: On a problem in the dynamic theory of cracks. Q. Appl. Math. 39(8), 419–423 (1981)

    MathSciNet  MATH  Google Scholar 

  46. Li, X.F.: Closed-form solution for a mode-III interface crack between two bonded dissimilar elastic layers. Int. J. Fract. 109(7), 3–8 (2001)

    Google Scholar 

  47. Wang, B.L., Mai, Y.W.: Closed-form solution for an antiplane interface crack between two dissimilar magnetoelectroelastic layers. J. Appl. Mech. 73, 281–290 (2006)

    MATH  Google Scholar 

  48. Sih, G., Chen, E.: Mechanics of Fracture 6: Cracks in Composite Materials. Martinus Nijhoff Publishers, The Hague (1981)

    Google Scholar 

  49. Exadaktylos, G.: Gradient elasticity with surface energy: mode-I crack problem. Int. J. Solids Struct. 35(5–6), 421–456 (1998)

    MathSciNet  MATH  Google Scholar 

  50. Exadaktylos, G.E., Vardoulakis, I.: Microstructure in linear elasticity and scale effects: a reconsideration of basic rock mechanics and rock fracture mechanics. Tectonophysics 335(1–2), 81–109 (2001)

    Google Scholar 

  51. Copson, E.: On certain dual integral equations. Glasg. Math. J. 5(1), 21–24 (1961)

    MathSciNet  MATH  Google Scholar 

  52. Atkinson, K., Shampine, L.: Solving Fredholm integral equations of the second kind in MATLAB. ACM Trans. Math. Software. 34(9) (2007)

  53. Mathews, J.H., Fink, K.D.: Numerical Methods Using MATLAB, vol. 4. Pearson Prentice Hall, Upper Saddle River (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. P. Joseph.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

Classical case

The conditions at the crack line (\(y =\) 0) are given as

$$\begin{aligned}&\tau _{yz} (x,0)=-\tau _{1} \left| x \right| <a, \end{aligned}$$
(A.1)
$$\begin{aligned}&w_{z} (x,0)=0 \left| x \right| \ge a, \end{aligned}$$
(A.2)

The application of integral transform technique on the displacement solution that satisfies the non-trivial equilibrium equation in z-direction \(\left( {\partial ^{2}w_{z} /\partial x^{2}+\partial ^{2}w_{z} /\partial y^{2}=0} \right) \)for the orthotropic material is written as [48]

$$\begin{aligned} w_{z} (x,y)=\frac{2}{\pi }\int \limits _0^\infty {\left[ {A\left( s \right) e^{-(sy/\sqrt{\beta })}+B(s)e^{(sy/\sqrt{\beta })}} \right] } \cos (sx)\text{ d }s, \quad y\ge 0 \end{aligned}$$
(A.3)

with the aid of (A.3), \(\tau _{yz} =G\left( {\partial w_{z} /\partial y} \right) \)may be expanded as

$$\begin{aligned} \tau _{yz} (x,y)=-\frac{2}{\pi }c_{44} \int \limits _0^\infty {s\left[ {A\left( s \right) e^{-(sy/\sqrt{\beta })}-B\left( s \right) e^{(sy/\sqrt{\beta })}} \right] } \cos \left( {sx} \right) \text{ d }s, \quad y\ge 0 \end{aligned}$$
(A.4)

Here, \(c_{44} \) is the shear modulus of the material, A(s) and B(s) are constants to be determined from the boundary conditions. For stress-free boundaries, the shear stresses at the upper and lower edge (i.e., \(y =\pm h)\) of the layer for all values of x would be zero. Mathematically, it may be written as

$$\begin{aligned} \tau _{yz} (x,\pm h)=0, \quad \left| x \right| <\infty \end{aligned}$$
(A.5)

Due to geometrical symmetry, the only upper half of the layer is considered. From (A.4) and (A.5), it may be shown that \(B(s)=e^{-(2sh/\sqrt{\beta })}A(s)\), so if \(A(s)=E(s)/(1+e^{-(2sh/\sqrt{\beta })})\) then \(B(s)=e^{-(2sh/\sqrt{\beta })}E(s)/(1+e^{-(2sh/\sqrt{\beta })})\), where E(s) is an unknown function to be determined. The conditions (A.1) and (A.2) are satisfied if E(s) is the solution of dual integral equations given as

$$\begin{aligned}&\int \limits _0^\infty {E(s)\cos (sx)\mathrm{d}s=0,} \quad x\ge a \end{aligned}$$
(A.6a)
$$\begin{aligned}&\int \limits _0^\infty {sF_{sc} (s)} E(s)\cos (sx)\mathrm{d}s=\frac{\pi \tau _{1} \sqrt{\beta }}{2G}, \quad x<a \end{aligned}$$
(A.6b)

With \(F_{sc} (s)=(1-e^{-(2sh/\sqrt{\beta })})/(1+e^{-(2sh/\sqrt{\beta })})\), here “sc” in subscript represents the “stress-free boundaries & classical” case.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joseph, R.P., Zhang, C., Wang, B.L. et al. Analyzing size effects in a cracked orthotropic layer under antiplane shear loading. Arch Appl Mech 91, 1097–1112 (2021). https://doi.org/10.1007/s00419-020-01812-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-020-01812-1

Keywords

Navigation