Skip to main content
Log in

Deployment dynamical behavior of planetary rover mast mechanism considering geometric nonlinearity and laminated structure characteristics

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

In this paper, the precise deployment dynamical behavior is studied for a planetary rover mast mechanism of spacecraft undergoing large attitude adjustment motion. In the conventional dynamic formulation, flexible appendages of mast attached to spacecraft are taken as linear deformations with isotropic material, and it can result in improper responses. Therefore, the present model takes into account the coupling relations between geometric nonlinearity and laminated structure characteristics. Accordingly, by introducing the nonlinear constitutive relation of laminated materials based on the higher-order shear deformation theory, the nonlinear dynamic model of the planetary rover mast mechanism composed of laminated composite material is deduced based on the virtual work principle including geometric nonlinearity and material nonlinearity. By comparing the experiments results and those of present nonlinear model, the correctness and accuracy of present nonlinear model are verified. Furthermore, numerical examples are presented to investigate the nonlinear laminated material effect on deployment dynamical behavior of the planetary rover mast mechanism using different laying angles and curvature radii, and the results also testify the accuracy and efficiency of the formulation. The conclusions have important theoretical value and practical engineering significance for the dynamic characteristics and vibration control of attitude adjustment of planetary rover mast mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Banks, M.: Jade Rabbit wakes up from lunar sleep. Phys. World 27(03), 10–10 (2014). https://doi.org/10.1088/2058-7058/27/03/18

    Article  Google Scholar 

  2. Warden, R.M., Cross, M., Harvison, D.: Pancam mast assembly on mars rover. In: Proceedings of the 37th Aerospace Mechanisms Symposium. Johnson Space Center, May 2004, vol. 19–21, pp. 263–276 (2004)

  3. Li, H.J., Gao, H.B., Deng, Z.Q.: Design and analysis of the lunar rover mast mechanism. Robot 30(1), 13–16 (2008). https://doi.org/10.13973/j.cnki.robot.2008.01.005

    Article  Google Scholar 

  4. Zhang, S., Xu, Y.M., Liu, S.C., Jia, Y., Xue, B., Ma, Y.Q.: Rotation angle error calibration of chang’e-3 lunar rover mast system. Sci. Surv. Mapp. 3(1), 30–37 (2014). https://doi.org/10.16251/j.cnki.1009-2307.2014.09.029

    Article  Google Scholar 

  5. Liu, T., Zhang, W., Wang, J.F.: Nonlinear dynamics of composite laminated circular cylindrical shell clamped along a generatrix and with membranes at both ends. Nonlinear Dyn. 90(2), 1393–1417 (2017). https://doi.org/10.1007/s11071-017-3734-4

    Article  Google Scholar 

  6. Reddy, J.N.: A simple higher-order theory for laminated composite plates. ASME J. Appl. Mech. 51, 745–752 (1984). https://doi.org/10.1115/1.3167719

    Article  MATH  Google Scholar 

  7. Hirwani, C.K., Panda, S.K., Mahapatra, T.R.: Delamination effect on flexural responses of layered curved shallow shell panel-experimental and numerical analysis. Int. J. Comput. Methods 15(04), 1850027 (2018). https://doi.org/10.1142/S0219876218500275

    Article  MathSciNet  MATH  Google Scholar 

  8. Hirwani, C.K., Panda, S.K., Mahapatra, T.R.: Nonlinear finite element analysis of transient behaviour of delaminated composite plate. J. Vib. Acoust. 140(2), 021001 (2018). https://doi.org/10.2514/1.J055624

    Article  Google Scholar 

  9. Hirwani, C.K., Mahapatra, T.R., Panda, S.K., et al.: Nonlinear free vibration analysis of laminated carbon/epoxy curved panels. Def. Sci. J. 67(2), 207–218 (2017). https://doi.org/10.14429/dsj.67.10072

    Article  Google Scholar 

  10. Sahoo, S.S., Panda, S.K., Singh, V.K., Mahapatra, T.R.: Numerical investigation on the nonlinear flexural behaviour of wrapped glass/epoxy laminated composite panel and experimental validation. Arch. Appl. Mech. 87(2), 315–333 (2017). https://doi.org/10.1007/s00419-016-1195-8

    Article  Google Scholar 

  11. Chalhoub, N.G., Gordaninejad, F., Lin, Q., Ghazavi, A.: Dynamic modeling of a laminated composite-material flexible robot arm made of short beams. Math. Comput. Modell. Int. J. 14(5), 468–473 (1990). https://doi.org/10.1177/027836499101000511

    Article  Google Scholar 

  12. Hong, H.Y., Kim, J.M., Chung, J.: Equilibrium and modal analyses of rotating multibeam structures employing multiple reference frames. J. Sound Vib. 302(4), 789–805 (2007). https://doi.org/10.1016/j.jsv.2006.12.015

    Article  Google Scholar 

  13. Yoo, H.H., Ryan, R.R., Scott, R.A.: Dynamics of flexible beams undergoing overall motions. J. Sound Vib. 181(2), 261–278 (1995). https://doi.org/10.1006/jsvi.1995.0139

    Article  MATH  Google Scholar 

  14. Neto, M.A., Ambrósio, J.A.C., Leal, R.P.: Flexible multi-body systems models using composite materials components. Multibody Syst. Dyn. 12(4), 385–405 (2004). https://doi.org/10.1007/s11044-004-0911-2

    Article  MATH  Google Scholar 

  15. Neto, M.A., Ambrósio, J.A.C., Leal, R.P.: Composite materials in flexible multibody systems. Comput. Method Appl. Math. 195(50–51), 6860–6873 (2006). https://doi.org/10.1016/j.cma.2005.08.009

    Article  MATH  Google Scholar 

  16. Neto, M.A., Leal, R.P., Yu, W.: A triangular finite element with drilling degrees of freedom for static and dynamic analysis of smart laminated structures. Comput. Struct. 108–109(4), 61–74 (2012). https://doi.org/10.1016/j.compstruc.2012.02.014

    Article  Google Scholar 

  17. Darabi, M., Ganesan, R.: Non-linear vibration and dynamic instability of internally-thickness-tapered composite plates under parametric excitation. Compos. Struct. 176, 82–104 (2017). https://doi.org/10.1016/j.compstruct.2017.04.059

    Article  Google Scholar 

  18. Liu, C., Tian, Q., Hu, H.Y.: Dynamics of a large scale rigid-flexible multibody system composed of composite laminated plates. Multibody Syst. Dyn. 26(3), 283–305 (2011). https://doi.org/10.1016/j.compstruct.2017.04.059

    Article  MATH  Google Scholar 

  19. Liu, C., Tian, Q., Hu, H.Y.: New spatial curved beam and cylindrical shell elements of gradient-deficient absolute nodal coordinate formulation. Nonlinear Dyn. 70(3), 1903–1918 (2012). https://doi.org/10.1007/s11071-012-0582-0

    Article  MathSciNet  Google Scholar 

  20. Wu, G.Y., He, X.S., Deng, F.Y.: Dynamic analysis of a rotating composite plate. J. Vib. Shock 27(8), 149–154 (2008). https://doi.org/10.13465/j.cnki.jvs.2008.08.007

    Article  Google Scholar 

  21. Wu, G.Y., He, X.S.: Dynamic modeling for a composite plate undergoing large overall motion. Chin. J. Comput. Mech. 27(4), 667–672 (2010)

    Google Scholar 

  22. Zhang, W.H., Liu, J.Y.: Dynamic modeling of composite thin-plate multi-body systems with large deformation. J. Vib. Shock 35(8), 27–35 (2016). https://doi.org/10.13465/j.cnki.jvs.2016.08.005

    Article  Google Scholar 

  23. Kreja, I., Schmidt, R.: Large rotations in first-order shear deformation fe analysis of laminated shells. Int. J. Nonlinear Mech. 41(1), 101–123 (2006). https://doi.org/10.1016/j.ijnonlinmec.2005.06.009

    Article  MATH  Google Scholar 

  24. Pan, K.Q., Liu, J.Y.: Rigid-flexible coupling dynamics of composite shell considering thermal shock. J. Vib. Shock 32(16), 1–6 (2013). https://doi.org/10.13465/j.cnki.jvs.2013.16.008

    Article  Google Scholar 

  25. Kuang, J., Meehan, P.A., Leung, A.Y.T., Tan, S.: Nonlinear dynamics of a satellite with deployable solar panel arrays. Int. J. Nonlinear Mech. 39(7), 1161–1179 (2004). https://doi.org/10.1016/j.ijnonlinmec.2003.07.001

    Article  MATH  Google Scholar 

  26. Hao, P.B., You, B.D., Sun, Y.M., Liang, D.: Nonlinear dynamic analysis of deployment of laminated planetary rover mast. In: IEEE International Conference on Cybernetics and Intelligent Systems, pp. 299–300 (2018). https://doi.org/10.1109/ICCIS.2017.8274791

Download references

Acknowledgements

The authors are particularly grateful for Professor Zhao Yang of Harbin Institute of Technology. This material is based on Project 51575126 supported by the National Natural Science Foundation of China and Projects 2013M541358 and 2015T80358 supported by the China Postdoctoral Science Foundation

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bindi You.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

You, B., Liang, D., Hao, P. et al. Deployment dynamical behavior of planetary rover mast mechanism considering geometric nonlinearity and laminated structure characteristics. Arch Appl Mech 90, 1605–1623 (2020). https://doi.org/10.1007/s00419-020-01686-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-020-01686-3

Keywords

Navigation