Skip to main content
Log in

Rotary-impact nonlinear energy sink for shock mitigation: analytical and numerical investigations

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The nonlinear energy sink (NES) is a lightweight, strongly nonlinear dynamical attachment coupled to a (typically linear) large-scale primary structure for passive vibration mitigation. There are two nonlinear mechanisms governing the dynamics of the coupled system: irreversible targeted energy transfer (TET) from the primary structure to the NES, where energy is confined and locally dissipated, and NES-induced nonlinear energy scattering between the structural modes of the primary structure. In the literature, different NES designs have been investigated to optimize their nonlinear effects on the primary structures. One such design is the rotary NES consisting of a small mass inertially coupled to the primary structure through a rigid arm; another is the vibro-impact NES with non-smooth nonlinearities and inelastic collisions with the primary structure. These types have been found to achieve strong and rapid TET and are less sensitive to energy fluctuations. In this work, a hybrid NES design is proposed based on the synergetic synthesis of the rotary and impact-based NESs in a single rotary-impact NES (RINES). The RINES incorporates a fixed rigid barrier attached (typically) to the top floor of the primary structure to inflict impacts between its rotating mass and the top floor. An analytical study to evaluate its capacity to engage in resonance capture with a primary structure is presented first, followed by numerical investigations of cases when the RINES is attached to the top floors of small- and large-scale linear primary structures under impulsive excitation. The non-smooth nonlinearities induced through the consecutive impacts resulted in effective broadband shock mitigation at highly energetic response regimes, whereas the nonlinear inertial coupling enables similar beneficial mitigation capacity at lower-energetic response regimes. Hence, the combined effect of non-smooth and inertial nonlinearities enables effective passive mitigation capacity for a broad range of applied impulsive energies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Vakakis, A.F., Gendelman, O.V., Bergman, L.A., McFarland, D.M., Kerschen, G., Lee, Y.S.: Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems. Springer, Dordrecht (2008)

    MATH  Google Scholar 

  2. Ebrahimzade, N., Dardel, M., Shafaghat, R.: Performance comparison of linear and nonlinear vibration absorbers in aeroelastic characteristics of a wing model. Nonlinear Dyn. 86(2), 1075–1094 (2016). https://doi.org/10.1007/s11071-016-2948-1

    Article  Google Scholar 

  3. Bichiou, Y., Hajj, M.R., Nayfeh, A.H.: Effectiveness of a nonlinear energy sink in the control of an aeroelastic system. Nonlinear Dyn. 86(4), 2161–2177 (2016). https://doi.org/10.1007/s11071-016-2922-y

    Article  MathSciNet  Google Scholar 

  4. Yan, Z., Ragab, S.A., Hajj, M.R.: Passive control of transonic flutter with a nonlinear energy sink. Nonlinear Dyn. 91(1), 577–590 (2018). https://doi.org/10.1007/s11071-017-3894-2

    Article  Google Scholar 

  5. Guo, H., Cao, S., Yang, T., Chen, Y.: Aeroelastic suppression of an airfoil with control surface using nonlinear energy sink. Nonlinear Dyn. 94(2), 857–872 (2018). https://doi.org/10.1007/s11071-018-4398-4

    Article  Google Scholar 

  6. Malher, A., Touzé, C., Doaré, O., Habib, G., Kerschen, G.: Flutter control of a two-degrees-of-freedom airfoil using a nonlinear tuned vibration absorber. J. Comput. Nonlinear Dyn. 12(5), 051016 (2017). https://doi.org/10.1115/1.4036420

    Article  Google Scholar 

  7. Vaurigaud, B., Manevitch, L.I., Lamarque, C.H.: Passive control of aeroelastic instability in a long span bridge model prone to coupled flutter using targeted energy transfer. J. Sound Vib. 330(11), 2580–2595 (2011). https://doi.org/10.1016/j.jsv.2010.12.011

    Article  Google Scholar 

  8. Tumkur, R.K.R., Calderer, R., Masud, A., Pearlstein, A.J., Bergman, L.A., Vakakis, A.F.: Computational study of vortex-induced vibration of a sprung rigid circular cylinder with a strongly nonlinear internal attachment. J. Fluids Struct. 40, 214–232 (2013). https://doi.org/10.1016/j.jfluidstructs.2013.03.008

    Article  Google Scholar 

  9. Dongyang, C., Abbas, L.K., Guoping, W., Xiaoting, R., Marzocca, P.: Numerical study of flow-induced vibrations of cylinders under the action of nonlinear energy sinks (NESs). Nonlinear Dyn. 94(2), 925–957 (2018). https://doi.org/10.1007/s11071-018-4402-z

    Article  Google Scholar 

  10. Dai, H.L., Abdelkefi, A., Wang, L.: Vortex-induced vibrations mitigation through a nonlinear energy sink. Commun. Nonlinear Sci. Numer. Simul. 42, 22–36 (2017). https://doi.org/10.1016/j.cnsns.2016.05.014

    Article  Google Scholar 

  11. Tumkur, R.K.R., Pearlstein, A.J., Masud, A., Gendelman, O.V., Blanchard, A.B., Bergman, L.A., Vakakis, A.F.: Effect of an internal nonlinear rotational dissipative element on vortex shedding and vortex-induced vibration of a sprung circular cylinder. J. Fluid Mech. 828, 196–235 (2017). https://doi.org/10.1017/jfm.2017.504

    Article  MathSciNet  MATH  Google Scholar 

  12. Blanchard, A.B., Gendelman, O.V., Bergman, L.A., Vakakis, A.F.: Capture into slow-invariant-manifold in the fluid-structure dynamics of a sprung cylinder with a nonlinear rotator. J. Fluids Struct. 63, 155–173 (2016). https://doi.org/10.1016/j.jfluidstructs.2016.03.009

    Article  Google Scholar 

  13. Gourc, E., Seguy, S., Michon, G., Berlioz, A., Mann, B.P.: Quenching chatter instability in turning process with a vibro-impact nonlinear energy sink. J. Sound Vib. 355, 392–406 (2015). https://doi.org/10.1016/j.jsv.2015.06.025

    Article  Google Scholar 

  14. Li, T., Qiu, D., Seguy, S., Berlioz, A.: Activation characteristic of a vibro-impact energy sink and its application to chatter control in turning. J. Sound Vib. 405, 1–18 (2017). https://doi.org/10.1016/j.jsv.2017.05.033

    Article  Google Scholar 

  15. Nankali, A., Lee, Y.S., Kalmár-Nagy, T.: Targeted energy transfers for suppressing regenerative machine tool vibrations. J. Comput. Nonlinear Dyn. 12(1), 011010 (2017). https://doi.org/10.1115/1.4034397

    Article  Google Scholar 

  16. Yang, K., Zhang, Y.W., Ding, H., Yang, T.Z., Li, Y., Chen, L.Q.: Nonlinear energy sink for whole-spacecraft vibration reduction. J. Vib. Acoust. 139(2), 021011 (2017). https://doi.org/10.1115/1.4035377

    Article  Google Scholar 

  17. Sun, Y.H., Zhang, Y.W., Ding, H., Chen, L.Q.: Nonlinear energy sink for a flywheel system vibration reduction. J. Sound Vib. 429, 305–324 (2018). https://doi.org/10.1016/j.jsv.2018.05.025

    Article  Google Scholar 

  18. Tehrani, G.G., Dardel, M.: Mitigation of nonlinear oscillations of a Jeffcott rotor system with an optimized damper and nonlinear energy sink. Int. J. Non-Linear Mech. 98, 122–136 (2018). https://doi.org/10.1016/j.ijnonlinmec.2017.10.011

    Article  Google Scholar 

  19. Taghipour, J., Dardel, M., Pashaei, M.H.: Vibration mitigation of a nonlinear rotor system with linear and nonlinear vibration absorbers. Mech. Mach. Theory 128, 586–615 (2018). https://doi.org/10.1016/j.mechmachtheory.2018.07.001

    Article  Google Scholar 

  20. Guo, C., AL-Shudeifat, M.A., Vakakis, A.F., Bergman, L.A., McFarland, D.M., Yan, J.: Vibration reduction in unbalanced hollow rotor systems with nonlinear energy sinks. Nonlinear Dyn. 79(1), 527–538 (2015). https://doi.org/10.1007/s11071-014-1684-7

    Article  Google Scholar 

  21. Bab, S., Khadem, S.E., Shahgholi, M.: Lateral vibration attenuation of a rotor under mass eccentricity force using non-linear energy sink. Int. J. Non-Linear Mech. 67, 251–266 (2014). https://doi.org/10.1016/j.ijnonlinmec.2014.08.016

    Article  Google Scholar 

  22. Yao, H., Cao, Y., Ding, Z., Wen, B.: Using grounded nonlinear energy sinks to suppress lateral vibration in rotor systems. Mech. Syst. Signal Process. 124, 237–253 (2019). https://doi.org/10.1016/j.ymssp.2019.01.054

    Article  Google Scholar 

  23. Bab, S., Khadem, S.E., Shahgholi, M.: Vibration attenuation of a rotor supported by journal bearings with nonlinear suspensions under mass eccentricity force using nonlinear energy sink. Meccanica 50(9), 2441–2460 (2015). https://doi.org/10.1007/s11012-015-0156-6

    Article  MathSciNet  Google Scholar 

  24. Bab, S., Khadem, S.E., Shahgholi, M., Abbasi, A.: Vibration attenuation of a continuous rotor-blisk-journal bearing system employing smooth nonlinear energy sink. Mech. Syst. Signal Process. 84, 128–157 (2017). https://doi.org/10.1016/j.ymssp.2016.07.002

    Article  Google Scholar 

  25. Ebrahimzade, N., Dardel, M., Shafaghat, R.: Investigating the aeroelastic behaviors of rotor blades with nonlinear energy sinks. AIAA J. 56(7), 2256–2869 (2018). https://doi.org/10.2514/1.J056530

    Article  Google Scholar 

  26. Tehrani, G.G., Dardel, M.: Vibration mitigation of a flexible bladed rotor dynamic system with passive dynamic absorbers. Commun. Nonlinear Sci. Numer. Simul. 69, 1–30 (2018). https://doi.org/10.1016/j.cnsns.2018.08.007

    Article  MathSciNet  Google Scholar 

  27. Ahmadabadi, Z.N.: Nonlinear energy transfer from an engine crankshaft to an essentially nonlinear attachment. J. Sound Vib. 443, 139–154 (2019). https://doi.org/10.1016/j.jsv.2018.11.040

    Article  Google Scholar 

  28. Taleshi, M., Dardel, M., Pashaie, M.H.: Passive targeted energy transfer in the steady state dynamics of a nonlinear plate with nonlinear absorber. Chaos, Solitons Fractals 92, 56–72 (2016). https://doi.org/10.1016/j.chaos.2016.09.017

    Article  MathSciNet  MATH  Google Scholar 

  29. Chen, J., Zhang, W., Yao, M., Liu, J., Sun, M.: Vibration reduction in truss core sandwich plate with internal nonlinear energy sink. Compos. Struct. 193, 180–188 (2018). https://doi.org/10.1016/j.compstruct.2018.03.048

    Article  Google Scholar 

  30. Zhang, Y.W., Zhang, H., Hou, S., Xu, K.F., Chen, L.Q.: Vibration suppression of composite laminated plate with nonlinear energy sink. Acta Astronaut. 123, 109–115 (2016). https://doi.org/10.1016/j.actaastro.2016.02.021

    Article  Google Scholar 

  31. Mattei, P.O., Ponçot, R., Pachebat, M., Côte, R.: Nonlinear targeted energy transfer of two coupled cantilever beams coupled to a bistable light attachment. J. Sound Vib. 373, 29–51 (2016). https://doi.org/10.1016/j.jsv.2016.03.008

    Article  Google Scholar 

  32. Fang, X., Wen, J., Yin, J., Yu, D.: Highly efficient continuous bistable nonlinear energy sink composed of a cantilever beam with partial constrained layer damping. Nonlinear Dyn. 87(4), 2677–2695 (2017). https://doi.org/10.1007/s11071-016-3220-4

    Article  Google Scholar 

  33. Zhang, Y.W., Yuan, B., Fang, B., Chen, L.Q.: Reducing thermal shock-induced vibration of an axially moving beam via a nonlinear energy sink. Nonlinear Dyn. 87(2), 1159–1167 (2017). https://doi.org/10.1007/s11071-016-3107-4

    Article  Google Scholar 

  34. Kani, M., Khadem, S.E., Pashaei, M.H., Dardel, M.: Vibration control of a nonlinear beam with a nonlinear energy sink. Nonlinear Dyn. 83(1–2), 1–22 (2016). https://doi.org/10.1007/s11071-015-2304-x

    Article  MathSciNet  Google Scholar 

  35. Gourdon, E., Alexander, N.A., Taylor, C.A., Lamarque, C.H., Pernot, S.: Nonlinear energy pumping under transient forcing with strongly nonlinear coupling: theoretical and experimental results. J. Sound Vib. 300(3–5), 522–551 (2007). https://doi.org/10.1016/j.jsv.2006.06.074

    Article  Google Scholar 

  36. Sapsis, T.P., Quinn, D.D., Vakakis, A.F., Bergman, L.A.: Effective stiffening and damping enhancement of structures with strongly nonlinear local attachments. J. Vib. Acoust. 134(1), 011016 (2012). https://doi.org/10.1115/1.4005005

    Article  Google Scholar 

  37. Luo, J., Wierschem, N.E., Fahnestock, L.A., Spencer, B.F., Quinn, D.D., McFarland, D.M., Vakakis, A.F., Bergman, L.A.: Design, simulation, and large-scale testing of an innovative vibration mitigation device employing essentially nonlinear elastomeric springs. Earthq. Eng. Struct. Dyn. 43(12), 1829–1851 (2014). https://doi.org/10.1002/eqe.2424

    Article  Google Scholar 

  38. AL-Shudeifat, M.A.: Nonlinear energy sinks with nontraditional kinds of nonlinear restoring forces. J. Vib. Acoust. 139(2), 024503 (2017). https://doi.org/10.1115/1.4035479

    Article  Google Scholar 

  39. Vakakis, A.F., AL-Shudeifat, M.A., Hasan, M.A.: Interactions of propagating waves in a one-dimensional chain of linear oscillators with a strongly nonlinear local attachment. Meccanica 49(10), 2375–2397 (2014). https://doi.org/10.1007/s11012-014-0008-9

    Article  MATH  Google Scholar 

  40. AL-Shudeifat, M.A.: Highly efficient nonlinear energy sink. Nonlinear Dyn. 76(4), 1905–1920 (2014). https://doi.org/10.1007/s11071-014-1256-x

    Article  MathSciNet  MATH  Google Scholar 

  41. Habib, G., Romeo, F.: The tuned bistable nonlinear energy sink. Nonlinear Dyn. 89(1), 179–196 (2017). https://doi.org/10.1007/s11071-017-3444-y

    Article  Google Scholar 

  42. Qiu, D., Li, T., Seguy, S., Paredes, M.: Efficient targeted energy transfer of bistable nonlinear energy sink: application to optimal design. Nonlinear Dyn. 92(2), 443–461 (2018). https://doi.org/10.1007/s11071-018-4067-7

    Article  Google Scholar 

  43. Sigalov, G., Gendelman, O., AL-Shudeifat, M.A., Manevitch, L., Vakakis, A.F., Bergman, L.A.: Resonance captures and targeted energy transfers in an inertially-coupled rotational nonlinear energy sink. Nonlinear Dyn. 69(4), 1693–1704 (2012). https://doi.org/10.1007/s11071-012-0379-1

    Article  MathSciNet  Google Scholar 

  44. Sigalov, G., Gendelman, O., AL-Shudeifat, M.A., Manevitch, L., Vakakis, A.F., Bergman, L.A.: Alternation of regular and chaotic dynamics in a simple two-degree-of freedom system with nonlinear inertial coupling. Chaos 22(1), 013118 (2012). https://doi.org/10.1063/1.3683480

    Article  MathSciNet  MATH  Google Scholar 

  45. Gendelman, O., Sigalov, G., Manevitch, L., Mane, M., Vakakis, A.F., Bergman, L.A.: Dynamics of an eccentric rotational nonlinear energy sink. J. Appl. Mech. 79(1), 011012 (2012). https://doi.org/10.1115/1.4005402

    Article  Google Scholar 

  46. AL-Shudeifat, M.A., Wierschem, N.E., Bergman, L.A., Vakakis, A.F.: Numerical and experimental investigations of a rotating nonlinear energy sink. Meccanica 52(4–5), 763–779 (2017). https://doi.org/10.1007/s11012-016-0422-2

    Article  Google Scholar 

  47. Saeed, A.S., AL-Shudeifat, M.A., Vakakis, A.F.: Rotary-oscillatory nonlinear energy sink of robust performance. Int. J. Non-Linear Mech. 117, 103249 (2019). https://doi.org/10.1016/j.ijnonlinmec.2019.103249

    Article  Google Scholar 

  48. Benacchio, S., Malher, A., Boisson, J., Touzé, C.: Design of a magnetic vibration absorber with tunable stiffnesses. Nonlinear Dyn. 85(2), 893–911 (2016). https://doi.org/10.1007/s11071-016-2731-3

    Article  MathSciNet  Google Scholar 

  49. Kremer, D., Liu, K.: A nonlinear energy sink with an energy harvester: transient responses. J. Sound Vib. 333(20), 4859–4880 (2014). https://doi.org/10.1016/j.jsv.2014.05.010

    Article  Google Scholar 

  50. Feudo, S.L., Touzé, C., Boisson, J., Cumunel, G.: Nonlinear magnetic vibration absorber for passive control of a multi-storey structure. J. Sound Vib. 438, 33–53 (2018). https://doi.org/10.1016/j.jsv.2018.09.007

    Article  Google Scholar 

  51. AL-Shudeifat, M.A.: Asymmetric magnet-based nonlinear energy sink. J. Comput. Nonlinear Dyn. 10(1), 014502 (2015). https://doi.org/10.1115/1.4027462

    Article  Google Scholar 

  52. Gendelman, O.V.: Analytic treatment of a system with a vibro-impact nonlinear energy sink. J. Sound Vib. 331(21), 4599–4608 (2012). https://doi.org/10.1016/j.jsv.2012.05.021

    Article  Google Scholar 

  53. Li, T., Seguy, S., Berlioz, A.: Dynamics of cubic and vibro-impact nonlinear energy sink: analytical, numerical, and experimental analysis. J. Vib. Acoust. 138(3), 031010 (2016). https://doi.org/10.1115/1.4032725

    Article  Google Scholar 

  54. Gendelman, O., Alloni, A.: Dynamics of forced system with vibro-impact energy sink. J. Sound Vib. 358, 301–314 (2015). https://doi.org/10.1016/j.jsv.2015.08.020

    Article  Google Scholar 

  55. Li, T., Seguy, S., Berlioz, A.: On the dynamics around targeted energy transfer for vibro-impact nonlinear energy sink. Nonlinear Dyn. 87(3), 1453–1466 (2017). https://doi.org/10.1007/s11071-016-3127-0

    Article  Google Scholar 

  56. Li, T., Gourc, E., Seguy, S., Berlioz, A.: Dynamics of two vibro-impact nonlinear energy sinks in parallel under periodic and transient excitations. Int. J. Non-Linear Mech. 90, 100–110 (2017). https://doi.org/10.1016/j.ijnonlinmec.2017.01.010

    Article  Google Scholar 

  57. Gourc, E., Michon, G., Seguy, S., Berlioz, A.: Targeted energy transfer under harmonic forcing with a vibro-impact nonlinear energy sink: analytical and experimental developments. J. Vib. Acoust. 137(3), 031008 (2015). https://doi.org/10.1115/1.4029285

    Article  Google Scholar 

  58. Pennisi, G., Stephan, C., Gourc, E., Michon, G.: Experimental investigation and analytical description of a vibro-impact nes coupled to a single-degree-of-freedom linear oscillator harmonically forced. Nonlinear Dyn. 88(3), 1769–1784 (2017). https://doi.org/10.1007/s11071-017-3344-1

    Article  Google Scholar 

  59. Li, T., Seguy, S., Berlioz, A.: Optimization mechanism of targeted energy transfer with vibro-impact energy sink under periodic and transient excitation. Nonlinear Dyn. 87(4), 2415–2433 (2017). https://doi.org/10.1007/s11071-016-3200-8

    Article  Google Scholar 

  60. Li, T., Lamarque, C.H., Seguy, S., Berlioz, A.: Chaotic characteristic of a linear oscillator coupled with vibro-impact nonlinear energy sink. Nonlinear Dyn. 91(4), 2319–2330 (2018). https://doi.org/10.1007/s11071-017-4015-y

    Article  Google Scholar 

  61. AL-Shudeifat, M.A., Wierschem, N., Quinn, D.D., Vakakis, A.F., Bergman, L.A., Spencer, B.F.: Numerical and experimental investigation of ahighly effective single-sided vibro-impact non-linear energy sinkfor shock mitigation. Int. J. Non-Linear Mech. 52, 96–109 (2013). https://doi.org/10.1016/j.ijnonlinmec.2013.02.004

    Article  Google Scholar 

  62. AL-Shudeifat, M.A., Vakakis, A.F., Bergman, L.A.: Shock mitigation bymeans of low-to high frequency nonlinear targeted energy transfersin a largescale structure. J. Comput. Nonlinear Dyn. 11(2), 021006 (2016). https://doi.org/10.1115/1.4030540

    Article  Google Scholar 

  63. Wierschem, N.E., Hubbard, S.A., Luo, J., Fahnestock, L.A., Spencer, B.F., McFarland, D.M., Quinn, D.D., Vakakis, A.F., Bergman, L.A.: Response attenuation in a large-scale structure subjected to blast excitation utilizing a system of essentially nonlinear vibration absorbers. J. Sound Vib. 389, 52–72 (2017). https://doi.org/10.1016/j.jsv.2016.11.003

    Article  Google Scholar 

  64. Li, W., Wierschem, N.E., Li, X., Yang, T.: On the energy transfer mechanism of the single-sided vibro-impact nonlinear energy sink. J. Sound Vib. 437, 166–179 (2018). https://doi.org/10.1016/j.jsv.2018.08.057

    Article  Google Scholar 

  65. Luo, J., Wierschem, N.E., Hubbard, S.A., Fahnestock, L.A., Quinn, D.D., McFarland, D.M., Spencer, B.F., Vakakis, A.F., Bergman, L.A.: Large-scale experimental evaluation and numerical simulation of a system of nonlinear energy sinks for seismic mitigation. Eng. Struct. 77, 34–48 (2014). https://doi.org/10.1016/j.engstruct.2014.07.020

    Article  Google Scholar 

  66. Saeed, AS.: AL-Shudeifat MA. A new type of NES: rotary vibro-impact. In: Proceedings of the IDETC/CIE, Cleveland, OH, August 9-9, ASME Paper No. DETC2017-67774, pp. 5–11 (2017)

  67. Manevitch, L.I.: The description of localized normal modes in a chain of nonlinear coupled oscillators using complex variables. Nonlinear Dyn. 25(1–3), 95–109 (2001). https://doi.org/10.1023/A:1012994430793

    Article  MathSciNet  MATH  Google Scholar 

  68. Quinn, D.D., Hubbard, S., Wierschem, N., AL-Shudeifat, M.A., Ott, R.J., Luo, J., Spencer, B.F., McFarland, D.M., Vakakis, A.F., Bergman, L.A.: Equivalentmodal damping, stiffening and energy exchanges inmultidegree-of-freedom systems with strongly nonlinear attachments. Proc. Inst. Mech. Eng. Part K: J. Multi-Body Dyn. 226(2), 122–146 (2012). https://doi.org/10.1177/1464419311432671

    Article  Google Scholar 

  69. Wierschem, N.E., Quinn, D.D., Hubbard, S.A., AL-Shudeifat, M.A., McFarland, D.M., Luo, J., Fahnestock, L.A., Spencer, B.F., Vakakis, A.F., Bergman, L.A.: Passive damping enhancement of a two-degree-of freedom systemthrough a strongly nonlinear two-degree of- freedom attachment. J. Sound Vib. 331(25), 5393–5407 (2012). https://doi.org/10.1016/j.jsv.2012.06.023

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adnan S. Saeed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: System parameters of the two-story (small-scale) and nine-story (large-scale) structures [37, 46, 61,62,63, 65, 68, 69]

Appendix: System parameters of the two-story (small-scale) and nine-story (large-scale) structures [37, 46, 61,62,63, 65, 68, 69]

The mass matrix of the linear two-story structure with locked NESs is given by:

$$\begin{aligned} M=\left[ {{\begin{array}{ll} {24.2}&{} 0 \\ 0&{} {24.3} \\ \end{array} }} \right] \hbox { (Kg)} \end{aligned}$$
(A1)

The stiffness matrix of the linear two-story structure is given by:

$$\begin{aligned} K=\left[ {{\begin{array}{ll} {8220}&{} {-8220} \\ {-8220}&{} {15040} \\ \end{array} }} \right] \hbox { (N/m)} \end{aligned}$$
(A2)

Assuming proportional viscous damping distribution, the damping matrix of the linear two-story structure is given by:

$$\begin{aligned} C=\left[ {{\begin{array}{ll} {0.9679}&{} {-0.2951} \\ {-0.2951}&{} {1.2155} \\ \end{array} }} \right] \hbox { (N/m)} \end{aligned}$$
(A3)

The derived modal damping values are:

$$\begin{aligned} \lambda _i =0.0343, 0.0604 \end{aligned}$$
(A4)

The mass matrix of the linear nine-story structure with locked NESs is given by:

$$\begin{aligned} M=\left[ {{\begin{array}{l@{\quad }l@{\quad }l@{\quad }l@{\quad }l@{\quad }l@{\quad }l@{\quad }l@{\quad }l} {1037}&{} 0&{} 0&{} 0&{} 0&{} 0&{} 0&{} 0&{} 0 \\ 0&{} {1074}&{} 0&{} 0&{} 0&{} 0&{} 0&{} 0&{} 0 \\ 0&{} 0&{} {1075}&{} 0&{} 0&{} 0&{} 0&{} 0&{} 0 \\ 0&{} 0&{} 0&{} {1075}&{} 0&{} 0&{} 0&{} 0&{} 0 \\ 0&{} 0&{} 0&{} 0&{} {1075}&{} 0&{} 0&{} 0&{} 0 \\ 0&{} 0&{} 0&{} 0&{} 0&{} {1075}&{} 0&{} 0&{} 0 \\ 0&{} 0&{} 0&{} 0&{} 0&{} 0&{} {1075}&{} 0&{} 0 \\ 0&{} 0&{} 0&{} 0&{} 0&{} 0&{} 0&{} {1075}&{} 0 \\ 0&{} 0&{} 0&{} 0&{} 0&{} 0&{} 0&{} 0&{} {1098} \\ \end{array} }} \right] \hbox { (Kg)} \end{aligned}$$
(A5)

The stiffness matrix of the linear nine-story structure is given by:

$$\begin{aligned} K= & {} \left[ {\begin{array}{r@{\quad }r@{\quad }r@{\quad }r@{\quad }r@{\quad }r@{\quad }r@{\quad }r@{\quad }r} 3.6962&{} -3.7544&{} 0.0375 &{} 0.0035 &{} 0.0032 &{} 0.0032 &{} 0.0032 &{} 0.0032 &{} 0.0030 \\ -3.7544&{} 7.7430 &{} -4.0534&{} 0.0646 &{} -0.0006&{} 0.0002 &{} 0.0002 &{} 0.0002 &{} 0.0002 \\ 0.0375&{} -4.0534&{} 8.2141 &{} -4.2657&{} 0.0678 &{} -0.0007&{} 0.0001 &{} 0.0001 &{} 0.0001 \\ 0.0035&{} 0.0646 &{} -4.2657&{} 8.3986 &{} -4.2680&{} 0.0677 &{} -0.0008&{} 0.0000 &{} 0.0000 \\ 0.0032&{} -0.0006&{} 0.0678 &{} -4.2680&{} 8.3986 &{} -4.2680&{} 0.0677 &{} -0.0008&{} 0.0000 \\ 0.0032&{} 0.0002 &{} -0.0007&{} 0.0677 &{} -4.2680&{} 8.3986 &{} -4.2680&{} 0.0677 &{} -0.0008 \\ 0.0032&{} 0.0002 &{} 0.0001 &{} -0.0008&{} 0.0677 &{} -4.2680&{} 8.3986 &{} -4.2680&{} 0.0677 \\ 0.0032&{} 0.0002 &{} 0.0001 &{} 0.0000 &{} -0.0008&{} 0.0677 &{} -4.2680&{} 8.3989 &{} -4.2658 \\ 0.0030&{} 0.0002 &{} 0.0001 &{} 0.0000 &{} 0.0000 &{} -0.0008&{} 0.0677 &{} -4.2658&{} 7.6583 \\ \end{array}} \right] \nonumber \\&(\times 10^{6}\hbox {N/m}) \end{aligned}$$
(A6)

Assuming proportional viscous damping distribution, the damping matrix of the linear nine-story structure is given by:

$$\begin{aligned} C= & {} \left[ {\begin{array}{r@{\quad }r@{\quad }r@{\quad }r@{\quad }r@{\quad }r@{\quad }r@{\quad }r@{\quad }r} 0.8749 &{} -0.5133&{} -0.1418&{} -0.0590&{} -0.0310&{} -0.0180&{} -0.0107&{} -0.0060&{} -0.0028 \\ -0.5133&{} 1.3401 &{} -0.5330&{} -0.1004&{} -0.0441&{} -0.0237&{} -0.0137&{} -0.0078&{} -0.0039 \\ -0.1418&{} -0.5330&{} 1.6460 &{} -0.5988&{} -0.1179&{} -0.0518&{} -0.0273&{} -0.0149&{} -0.0072 \\ -0.0590&{} -0.1004&{} -0.5988&{} 1.6963 &{} -0.5834&{} -0.1095&{} -0.0461&{} -0.0226&{} -0.0104 \\ -0.0310&{} -0.0441&{} -0.1179&{} -0.5834&{} 1.7047 &{} -0.5777&{} -0.1047&{} -0.0413&{} -0.0173 \\ -0.0180&{} -0.0237&{} -0.0518&{} -0.1095&{} -0.5777&{} 1.7095 &{} -0.5729&{} -0.0992&{} -0.0344 \\ -0.0107&{} -0.0137&{} -0.0273&{} -0.0461&{} -0.1047&{} -0.5729&{} 1.7151 &{} -0.5653&{} -0.0888 \\ -0.0060&{} -0.0078&{} -0.0149&{} -0.0226&{} -0.0413&{} -0.0992&{} -0.5653&{} 1.7273 &{} -0.5498 \\ -0.0028&{} -0.0039&{} -0.0072&{} -0.0104&{} -0.0173&{} -0.0344&{} -0.0888&{} -0.5498&{} 1.7450 \\ \end{array}} \right] \nonumber \\&(\times 10^{3}\hbox {N s /m}) \end{aligned}$$
(A7)

The derived modal damping values are:

$$\begin{aligned} \lambda _i =0.2033, 0.6084, 1.0131, 1.3995, 1.7459, 2.0181, 2.1911, 2.3257, 2.4698 \end{aligned}$$
(A8)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saeed, A.S., AL-Shudeifat, M.A., Vakakis, A.F. et al. Rotary-impact nonlinear energy sink for shock mitigation: analytical and numerical investigations. Arch Appl Mech 90, 495–521 (2020). https://doi.org/10.1007/s00419-019-01622-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-019-01622-0

Keywords

Navigation