Skip to main content
Log in

Static condensation method for the reduced dynamic modeling of mechanisms and structures

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

In this paper, a novel static condensation method is extended to mechanisms and structures with internal joints. The formulation is framed inside the static reduction techniques in a similar way to the classic Guyan–Iron reduction. A new class of joint nodes is added to the existing classes of inner and boundary nodes to consider joint constraints inside the compatibility conditions. Within the set of joint nodes, a reduced subset of independent nodes can be individuated to perform the static reduction. A simple connection rule is provided to determine the independent nodes of a mechanical system composed of rigid bodies, flexible components and joints. The inner and boundary nodes are then expressed in terms of the independent joint nodes to form a new transformation matrix able to reduce the stiffness and mass matrices of the original system without connections. Joint stiffness and external forces are also included in the final reduction process. Finally, two examples prove the efficiency and demonstrate the equivalence and compatibility of the proposed method with other static reduction techniques in order to create a unique substructuring framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Alessandro, C., Rosario, S.: Elastodynamic optimization of a 3t1r parallel manipulator. Mech. Mach. Theory 73, 184–196 (2014)

    Article  Google Scholar 

  2. Angeles, J., Angeles, J.: Fundamentals of robotic mechanical systems: theory. Methods, and Algorithms (Mechanical Engineering Series, Vol. 2) p. 98 (2007)

  3. Bai, Z., Su, Y.: Dimension reduction of large-scale second-order dynamical systems via a second-order Arnoldi method. SIAM J. Sci. Comput. 26(5), 1692–1709 (2005)

    Article  MathSciNet  Google Scholar 

  4. Cammarata, A.: Unified formulation for the stiffness analysis of spatial mechanisms. Mech. Mach. Theory 105, 272–284 (2016)

    Article  Google Scholar 

  5. Cammarata, A.: A novel method to determine position and orientation errors in clearance-affected overconstrained mechanisms. Mech. Mach. Theory 118, 247–264 (2017)

    Article  Google Scholar 

  6. Cammarata, A., Condorelli, D., Sinatra, R.: An algorithm to study the elastodynamics of parallel kinematic machines with lower kinematic pairs. J. Mech. Robot. 5(1), 011004 (2013)

    Article  Google Scholar 

  7. Cammarata, A., D’Urso, D., Caliò, I., Greco, A., Lacagnina, M., Fichera, G.: Dynamic stiffness model of spherical parallel robots. J. Sound Vib. 384, 312–324 (2016)

    Article  Google Scholar 

  8. Cammarata, A., Sinatra, R.: On the elastostatics of spherical parallel machines with curved links. In: Recent Advances in Mechanism Design for Robotics, pp. 347–356. Springer, Berlin (2015)

    Chapter  Google Scholar 

  9. Cardona, A., Géradin, M.: A superelement formulation for mechanism analysis. Comput. Methods Appl. Mech. Eng. 100(1), 1–29 (1992)

    Article  MathSciNet  Google Scholar 

  10. Castanier, M.P., Tan, Y.C., Pierre, C.: Characteristic constraint modes for component mode synthesis. AIAA J. 39(6), 1182–1187 (2001)

    Article  Google Scholar 

  11. Chen, S.H., Pan, H.: Guyan reduction. Int. J. Numer. Methods Biomed. Eng. 4(4), 549–556 (1988)

    MathSciNet  MATH  Google Scholar 

  12. Gawronski, W.K.: Dynamics and Control of Structures: A Modal Approach. Springer, Berlin (2004)

    Book  Google Scholar 

  13. Guyan, R.J.: Reduction of stiffness and mass matrices. AIAA J. 3(2), 380 (1965)

    Article  Google Scholar 

  14. Herting, D.: A general purpose, multi-stage, component modal synthesis method. Finite Elem. Anal. Des. 1(2), 153–164 (1985)

    Article  Google Scholar 

  15. Hinke, L., Dohnal, F., Mace, B.R., Waters, T.P., Ferguson, N.: Component mode synthesis as a framework for uncertainty analysis. J. Sound Vib. 324(1), 161–178 (2009)

    Article  Google Scholar 

  16. Hurty, W.C.: Dynamic analysis of structural systems using component modes. AIAA J. 3(4), 678–685 (1965)

    Article  Google Scholar 

  17. Klerk, Dd, Rixen, D.J., Voormeeren, S.: General framework for dynamic substructuring: history, review and classification of techniques. AIAA J. 46(5), 1169–1181 (2008)

    Article  Google Scholar 

  18. Lall, S., Marsden, J.E., Glavaški, S.: A subspace approach to balanced truncation for model reduction of nonlinear control systems. Int. J. Robust Nonlinear Control IFAC Affil. J. 12(6), 519–535 (2002)

    Article  MathSciNet  Google Scholar 

  19. Leung, A.Y.T.: An accurate method of dynamic condensation in structural analysis. Int. J. Numer. Methods Eng. 12(11), 1705–1715 (1978)

    Article  Google Scholar 

  20. MacNeal, R.H.: A hybrid method of component mode synthesis. Comput. Struct. 1(4), 581–601 (1971)

    Article  Google Scholar 

  21. Murray-Smith, R., Johansen, T.: Multiple Model Approaches to Nonlinear Modelling and Control. CRC Press, Boca Raton (1997)

    Google Scholar 

  22. Qiu, J.B., Ying, Z.G., Williams, F.: Exact modal synthesis techniques using residual constraint modes. Int. J. Numer. Methods Eng. 40(13), 2475–2492 (1997)

    Article  Google Scholar 

  23. Qu, Z.Q.: Model Order Reduction Techniques with Applications in Finite Element Analysis. Springer, Berlin (2013)

    Google Scholar 

  24. Rixen, D.J.: A dual craig–bampton method for dynamic substructuring. J. Comput. Appl. Math. 168(1–2), 383–391 (2004)

    Article  MathSciNet  Google Scholar 

  25. Rubin, S.: Improved component-mode representation for structural dynamic analysis. AIAA J. 13(8), 995–1006 (1975)

    Article  Google Scholar 

  26. Scherer, C.W.: LPV control and full block multipliers. Automatica 37(3), 361–375 (2001)

    Article  MathSciNet  Google Scholar 

  27. Shabana, A.A., Wehage, R.A.: A coordinate reduction technique for dynamic analysis of spatial substructures with large angular rotations. J. Struct. Mech. 11(3), 401–431 (1983)

    Article  Google Scholar 

  28. Su, T.J., Craig, R.R.: Model reduction and control of flexible structures using Krylov vectors. J. Guidance Control Dyn. 14(2), 260–267 (1991)

    Article  Google Scholar 

  29. Wittrick, W., Williams, F.: A general  algorithm for computing natural frequencies of elastic structures. Q. J. Mech. Appl. Math. 24(3), 263–284 (1971)

    Article  MathSciNet  Google Scholar 

  30. Wu, G., Bai, S., Hjørnet, P.: Design analysis and dynamic modeling of a high-speed 3t1r pick-and-place parallel robot. In: Recent Advances in Mechanism Design for Robotics, pp. 285–295. Springer, Berlin (2015)

    Chapter  Google Scholar 

  31. Wu, G., Bai, S., Hjørnet, P.: Parametric optimal design of a parallel schönflies-motion robot under pick-and-place trajectory constraints. In: Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ International Conference on, pp. 3158–3163. IEEE (2015)

  32. Wu, G., Bai, S., Hjørnet, P.: Multi-objective design optimization of a parallel schönflies-motion robot. In: Advances in Reconfigurable Mechanisms and Robots II, pp. 657–667. Springer, Berlin (2016)

    Google Scholar 

  33. Wu, G., Bai, S., Hjørnet, P.: On the stiffness of three/four degree-of-freedom parallel pick-and-place robots with four identical limbs. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 861–866. IEEE (2016)

Download references

Acknowledgements

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Cammarata.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In Sect. 3.3, the following system (20) has been derived:

$$\begin{aligned} {\left\{ \begin{array}{ll} \mathbf{K}_\mathrm{II}\mathbf{u}_\mathrm{I} + \mathbf{K}_\mathrm{IB}\mathbf{u}_\mathrm{B} = \mathbf{0}\\ \mathbf{H}_\mathrm{B}^\mathrm{T}\mathbf{K}_\mathrm{BI}\mathbf{u}_\mathrm{I} + \mathbf{H}_\mathrm{B}^\mathrm{T}\mathbf{K}_\mathrm{BB}\mathbf{u}_\mathrm{B} = \mathbf{H}_\mathrm{B}^\mathrm{T}\mathbf{f}_\mathrm{B}\\ \mathbf{u}_\mathrm{B} = \mathbf{G}_\mathrm{B}\mathbf{u}_O + \mathbf{H}_\mathrm{B}{\varvec{\theta }}_M \end{array}\right. } \end{aligned}$$
(35)

It can be recognized that from the first equation of this system, the Guyan–Iron transformation is recovered. Then, after substituting the third equation into the second one, we derive

$$\begin{aligned} \mathbf{H}_\mathrm{B}^\mathrm{T}\mathbf{K}_\mathrm{BI}\mathbf{u}_\mathrm{I} + \mathbf{H}_\mathrm{B}^\mathrm{T}\mathbf{K}_\mathrm{BB}\mathbf{G}_\mathrm{B}\mathbf{u}_O + \mathbf{H}_\mathrm{B}^\mathrm{T}\mathbf{K}_\mathrm{BB}\mathbf{H}_\mathrm{B}{\varvec{\theta }}_M = \mathbf{H}_\mathrm{B}^\mathrm{T}\mathbf{f}_\mathrm{B} \end{aligned}$$
(36)

After computation, \({{\varvec{\theta }}}_M\) is obtained, i.e.,

$$\begin{aligned} {{\varvec{\theta }}}_M = -({\mathbf{H}_\mathrm{B}}^\mathrm{T}\mathbf{K}_\mathrm{BB}\mathbf{H}_{B})^{-1}({\mathbf{H}_\mathrm{B}}^\mathrm{T}\mathbf{K}_\mathrm{BI}\mathbf{u}_\mathrm{I} + \mathbf{H}_\mathrm{B}^\mathrm{T}\mathbf{K}_\mathrm{BB}\mathbf{G}_{B}\mathbf{u}_O - \mathbf{H}_\mathrm{B}^\mathrm{T}\mathbf{f}_{B}). \end{aligned}$$
(37)

Substituting \({{\varvec{\theta }}}_M\) into the third equation of the system, we finally obtain

$$\begin{aligned} \mathbf{u}_\mathrm{B} = \mathbf{L}_\mathrm{B} \mathbf{u}_O + \mathbf{L}_F \mathbf{f}_\mathrm{B} \end{aligned}$$
(38)

where

$$\begin{aligned} \mathbf{L}_F= & {} {\varvec{\varGamma }}_\mathrm{B}^{-1}(\mathbf{H}_{B}{\varDelta _\mathrm{B}}^{-1}{\mathbf{H}_{B}}^\mathrm{T}) \end{aligned}$$
(39a)
$$\begin{aligned} \mathbf{L}_\mathrm{B}= & {} {\varvec{\varGamma }}_\mathrm{B}^{-1}(\mathbf{H}_{B}{\varDelta _\mathrm{B}}^{-1}{\mathbf{H}_{B}}^\mathrm{T} \mathbf{K}_\mathrm{BB}\mathbf{G}_\mathrm{B} - \mathbf{G}_\mathrm{B}) \end{aligned}$$
(39b)
$$\begin{aligned} {\varvec{\varGamma }}_\mathrm{B}= & {} \mathbf{H}_{B}{\varDelta _\mathrm{B}}^{-1}{\mathbf{H}_{B}}^\mathrm{T} \mathbf{K}_\mathrm{BI}{\mathbf{K}_\mathrm{II}}^{-1}\mathbf{K}_\mathrm{IB} - \mathbf{1}_\mathrm{B} \end{aligned}$$
(39c)

and \(\varDelta _\mathrm{B} = {\mathbf{H}_\mathrm{B}}^\mathrm{T}\mathbf{K}_\mathrm{BB}\mathbf{H}_{B}\). Without changing the sense of the explanation, let us impose \(\mathbf{f}_\mathrm{B}=\mathbf{0}\), and then, the expression between \(\mathbf{u}_\mathrm{B}\) and \(\mathbf{u}_O\) is reduced to

$$\begin{aligned} \mathbf{u}_\mathrm{B} = \mathbf{L}_\mathrm{B} \mathbf{u}_O \end{aligned}$$
(40)

where \(\mathbf{L}_\mathrm{B}\) is used to create a new transformation matrix \(\varPsi _L\), defined as

$$\begin{aligned} \left[ \begin{array}{c} \mathbf{u}_\mathrm{I}\\ \mathbf{u}_\mathrm{B} \end{array} \right] = \varPsi _L \mathbf{u}_O \Rightarrow \varPsi _L = \varPsi \mathbf{L}_\mathrm{B} \end{aligned}$$
(41)

where \(\varPsi \) has been defined in Eq. (4) for the Guyan–Iron condensation. It can be verified by direct substitution that when all joints are locked, that is when \(\mathbf{H}_{B} \equiv \mathbf{O}\), it follows that \(\mathbf{L}_\mathrm{B} \equiv \mathbf{G}_\mathrm{B}\) and \(\varPsi _L \equiv \varPsi \mathbf{G}_\mathrm{B}\). The latter expresses that the Guyan–Iron transformation can be recovered simply by blocking the joints. Considering \(\varPsi _L\), the following reduced system is written

$$\begin{aligned} \mathbf{M}_L \ddot{\mathbf{u}}_b + \mathbf{K}_L \mathbf{u}_b = \mathbf{F}_L \end{aligned}$$
(42)

where \(\mathbf{M}_L\), \(\mathbf{K}_L\), respectively, are the reduced mass and stiffness matrices, defined as

$$\begin{aligned} \mathbf{M}_L = \varPsi _L^\mathrm{T} \mathbf{M}\varPsi _L,\quad \mathbf{K}_L = \varPsi _L^\mathrm{T} \mathbf{K}\varPsi _L \end{aligned}$$
(43)

and \(\mathbf{F}_L\) is the array of reduced forces. The expressions of \(\mathbf{M}_L\), \(\mathbf{K}_L\) and \(\mathbf{F}_L\) are not reported for brevity. Compared to the previous formulations proposed by the authors in [4, 6, 7], the new approach is global and does not require different cases of coupling between bodies.

In particular cases, the vector \(\mathbf{f}_\mathrm{B}\) may include elastic forces. Therefore, suppose that an elastic force/torque is applied to the boundary node of a generic joint, the corresponding generalized force vector \(\mathbf{f}_b\) becomes

$$\begin{aligned} \mathbf{f}_b = -k_e \mathbf{h}_b \theta _m \end{aligned}$$
(44)

where \(k_e\) is the stiffness at the joint location. This expression can be extended to the global vector \(\mathbf{f}_\mathrm{B}\), i.e.,

$$\begin{aligned} \mathbf{f}_\mathrm{B} = -\mathbf{K}_E \mathbf{H}_\mathrm{B} {\varvec{\theta }}_M,\quad \mathbf{K}_E = \textsf {diag}(\mathbf{O}_6,\ldots ,k_e\mathbf{1}_6,\ldots ,\mathbf{O}_6) \end{aligned}$$
(45)

where \(\mathbf{K}_E\) is the generalized stiffness matrix containing all joint stiffness. By substituting this expression into the right-side term \(\mathbf{H}_\mathrm{B}^\mathrm{T}\mathbf{f}_\mathrm{B}\) of Eq. (36), we obtain

$$\begin{aligned} \mathbf{H}_\mathrm{B}^\mathrm{T}\mathbf{K}_\mathrm{BI}\mathbf{u}_\mathrm{I} + \mathbf{H}_\mathrm{B}^\mathrm{T}\mathbf{K}_\mathrm{BB}\mathbf{G}_\mathrm{B}\mathbf{u}_O + \mathbf{H}_\mathrm{B}^\mathrm{T}\mathbf{K}_\mathrm{BB}\mathbf{H}_\mathrm{B}{\varvec{\theta }}_M = -\mathbf{H}_\mathrm{B}^\mathrm{T} \mathbf{K}_E \mathbf{H}_\mathrm{B} {\varvec{\theta }}_M \end{aligned}$$
(46)

from which it can be obtained that \({{\varvec{\theta }}}_M\) becomes

$$\begin{aligned} {{\varvec{\theta }}}_M = -[{\mathbf{H}_\mathrm{B}}^\mathrm{T}(\mathbf{K}_\mathrm{BB} + \mathbf{K}_E)\mathbf{H}_{B}]^{-1}({\mathbf{H}_\mathrm{B}}^\mathrm{T}\mathbf{K}_\mathrm{BI}\mathbf{u}_\mathrm{I} + \mathbf{H}_\mathrm{B}^\mathrm{T}\mathbf{K}_\mathrm{BB}\mathbf{G}_{B}\mathbf{u}_O) \end{aligned}$$
(47)

This expression replaces Eq. (37) and allows for obtaining the transformation matrix \(\varPsi _L\) in a manner similar to what has been done previously.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cammarata, A., Sinatra, R. & Maddìo, P.D. Static condensation method for the reduced dynamic modeling of mechanisms and structures. Arch Appl Mech 89, 2033–2051 (2019). https://doi.org/10.1007/s00419-019-01560-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-019-01560-x

Keywords

Navigation