Skip to main content
Log in

A phase-field model for transversely isotropic ferroelectrics

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

We propose an electro-mechanically coupled phase-field model for ferroelectric materials that show cubic–tetragonal phase transition. The cubic phase is idealized by an isotropic formulation, and the tetragonal phase is idealized by a transversely isotropic formulation. We consider a classical phase-field model with Ginzburg–Landau-type evolution of the order parameter. The order parameter drives the transition of all involved moduli tensors such as elastic, dielectric and piezoelectric moduli, which in turn maintain their typical features and stability as a result of a selected phase-transition function. The model is described in coordinate-invariant form and implemented into a finite element framework with implicit time integration of the evolution equation. Representative numerical examples in two and three dimensions demonstrate the main features of the constitutive model and the numerical stability of the formulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. For brevity, we neglect all volumetric sources such as mechanical body forces and free electric charges.

  2. Please note that the realistic grain size of ferroelectrics is much larger. We have selected such small dimensions for the purpose of demonstration only. With the given dimensions, the material is provided with enough freedom to find some suitable domain configuration (the domain-wall width of barium titanate is approximately 1.5 nm).

  3. Note that in this example, we deliberately assume a smooth transition of the spontaneous polarization across grain boundaries. A computational analysis of associated implications is given in [31].

  4. We note that depending on the size of the sample, the proposed model predicts domain configurations with more complex patterns. As such phenomena seem rather unusual in experiments and computations [43,44,45,46], the associated implications are a part of the current research. For the phase-field analysis of size effects in ferroelectrics, we refer to [47,48,49].

References

  1. Xu, Y.: Ferroelectric Materials and Their Applications. Elsevier, Amsterdam (2013)

    Google Scholar 

  2. Fetisov, Y.K., Bush, A.A., Kamentsev, K.E., Ostashchenko, A.Y., Srinivasan, G.: Ferrite-piezoelectric multilayers for magnetic field sensors. IEEE Sens. J. 6(4), 935–938 (2006)

    Article  Google Scholar 

  3. Bibes, M., Barthélémy, A.: Multiferroics: towards a magnetoelectric memory. Nat. Mater. 7(6), 425 (2008)

    Article  Google Scholar 

  4. Spaldin, N.A., Fiebig, M.: The renaissance of magnetoelectric multiferroics. Science 309(5733), 391–392 (2005)

    Article  Google Scholar 

  5. Nan, C.-W., Bichurin, M.I., Dong, S., Viehland, D., Srinivasan, G.: Multiferroic magnetoelectric composites: historical perspective, status, and future directions. J. Appl. Phys. 103(3), 1 (2008)

    Article  Google Scholar 

  6. Schröder, J., Labusch, M., Keip, M.-A.: Algorithmic two-scale transition for magneto-electro-mechanically coupled problems: \(\text{ FE }^{2}\)-scheme: localization and homogenization. Comput. Methods Appl. Mech. Eng. 302, 253–280 (2016)

    Article  Google Scholar 

  7. Von Hippel, A.: Ferroelectricity, domain structure, and phase transitions of barium titanate. Rev. Mod. Phys. 22(3), 221 (1950)

    Article  Google Scholar 

  8. Arlt, G., Hennings, D., de With, G.: Dielectric properties of fine-grained barium titanate ceramics. J. Appl. Phys. 58(4), 1619–1625 (1985)

    Article  Google Scholar 

  9. Frey, M., Payne, D.: Nanocrystalline barium titanate: evidence for the absence of ferroelectricity in sol-gel derived thin-layer capacitors. Appl. Phys. Lett. 63(20), 2753–2755 (1993)

    Article  Google Scholar 

  10. Zgonik, M., Bernasconi, P., Duelli, M., Schlesser, R., Günter, P., Garrett, M.H., Rytz, D., Zhu, Y., Wu, X.: Dielectric, elastic, piezoelectric, electro-optic, and elasto-optic tensors of \(\text{ BaTiO }_3\) crystals. Phys. Rev. B 50(9), 5941 (1994)

    Article  Google Scholar 

  11. Toupin, R.A.: The elastic dielectric. J. Ration. Mech. Anal. 5(6), 849–915 (1956)

    MathSciNet  MATH  Google Scholar 

  12. Eringen, A.C.: On the foundations of electroelastostatics. Int. J. Eng. Sci. 1(1), 127–153 (1963)

    Article  MathSciNet  Google Scholar 

  13. Maugin, G.: Continuum Mechanics of Electromagnetic Solids, vol. 33. North-Holland, Amsterdam (1988)

    Book  MATH  Google Scholar 

  14. Eringen, A.C., Maugin, G.A.: Electrodynamics of Continua. Springer, New York (1990)

    Book  Google Scholar 

  15. Kovetz, A.: Electromagnetic Theory. Oxford University Press, Oxford (2000)

    MATH  Google Scholar 

  16. Hwang, S.C., Lynch, C.S., McMeeking, R.M.: Ferroelectric/ferroelastic interactions and a polarization switching model. Acta Metall. Mater. 43(5), 2073–2084 (1995)

    Article  Google Scholar 

  17. Huber, J.E., Fleck, N.A., Landis, C.M., McMeeking, R.M.: A constitutive model for ferroelectric polycrystals. J. Mech. Phys. Solids 47(8), 1663–1697 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. Huber, J.E., Fleck, N.A.: Multi-axial electrical switching of a ferroelectric: theory versus experiment. J. Mech. Phys. Solids 49(4), 785–811 (2001)

    Article  MATH  Google Scholar 

  19. Kamlah, M.: Ferroelectric and ferroelastic piezoceramics-modeling of electromechanical hysteresis phenomena. Contin. Mech. Thermodyn. 13(4), 219–268 (2001)

    Article  MATH  Google Scholar 

  20. Landis, C.M.: Non-linear constitutive modeling of ferroelectrics. Curr. Opin. Solid State Mater. Sci. 8(1), 59–69 (2004)

    Article  Google Scholar 

  21. Schröder, J., Gross, D.: Invariant formulation of the electromechanical enthalpy function of transversely isotropic piezoelectric materials. Arch. Appl. Mech. 73(8), 533–552 (2004)

    Article  MATH  Google Scholar 

  22. Rosato, D., Miehe, C.: Dissipative ferroelectricity at finite strains. Variational principles, constitutive assumptions and algorithms. Int. J. Eng. Sci. 74, 163–189 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zhang, W., Bhattacharya, K.: A computational model of ferroelectric domains. Part I: model formulation and domain switching. Acta Mater. 53(1), 185–198 (2005)

    Article  Google Scholar 

  24. Su, Y., Landis, C.M.: Continuum thermodynamics of ferroelectric domain evolution: theory, finite element implementation, and application to domain wall pinning. J. Mech. Phys. Solids 55(2), 280–305 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Schrade, D., Müller, R., Xu, B.X., Gross, D.: Domain evolution in ferroelectric materials: a continuum phase field model and finite element implementation. Comput. Methods Appl. Mech. Eng. 196(41), 4365–4374 (2007)

    Article  MATH  Google Scholar 

  26. Zhang, W., Bhattacharya, K.: A computational model of ferroelectric domains. Part II: grain boundaries and defect pinning. Acta Mater. 53, 199–209 (2005)

    Article  Google Scholar 

  27. Choudhury, S., Li, Y.L., Krill III, C.E., Chen, L.-Q.: Phase-field simulation of polarization switching and domain evolution in ferroelectric polycrystals. Acta Mater. 53(20), 5313–5321 (2005)

    Article  Google Scholar 

  28. Choudhury, S., Li, Y.L., Krill III, C.E., Chen, L.-Q.: Effect of grain orientation and grain size on ferroelectric domain switching and evolution: phase field simulations. Acta Mater. 55(4), 1415–1426 (2007)

    Article  Google Scholar 

  29. Chen, L.-Q.: Phase-field method of phase transitions/domain structures in ferroelectric thin films: a review. J. Am. Ceram. Soc. 91(6), 1835–1844 (2008)

    Article  Google Scholar 

  30. Kontsos, A., Landis, C.M.: Phase-field modeling of domain structure energetics and evolution in ferroelectric thin films. J. Appl. Mech. 77(4), 041014 (2010)

    Article  Google Scholar 

  31. Völker, B., Kamlah, M.: Large-signal analysis of typical ferroelectric domain structures using phase-field modeling. Smart Mater. Struct. 21(055013), 1–10 (2012)

    Google Scholar 

  32. Vidyasagar, A., Tan, W.L., Kochmann, D.M.: Predicting the effective response of bulk polycrystalline ferroelectric ceramics via improved spectral phase field methods. J. Mech. Phys. Solids 106, 133–151 (2017)

    Article  MathSciNet  Google Scholar 

  33. Völker, B., Marton, P., Elsässer, C., Kamlah, M.: Multiscale modeling for ferroelectric materials: a transition from the atomic level to phase-field modeling. Contin. Mech. Thermodyn. 23(5), 435–451 (2011)

    Article  MATH  Google Scholar 

  34. Völker, B., Landis, C.M., Kamlah, M.: Multiscale modeling for ferroelectric materials: identification of the phase-field model’s free energy for PZT from atomistic simulations. Smart Mater. Struct. 21(3), 035025 (2012)

    Article  Google Scholar 

  35. Schrade, D., Müller, R., Gross, D.: On the physical interpretation of material parameters in phase field models for ferroelectrics. Arch. Appl. Mech. 83(10), 1393–1413 (2013)

    Article  MATH  Google Scholar 

  36. Schrade, D., Müller, R., Gross, D., Keip, M.-A., Thai, H., Schröder, J.: An invariant formulation for phase field models in ferroelectrics. Int. J. Solids Struct. 51(11), 2144–2156 (2014)

    Article  Google Scholar 

  37. Schrade, D., Müller, R., Gross, D., Steinmann, P.: Phase field simulations of the poling behavior of \(\text{ BaTiO }_3\) nano-scale thin films with \(\text{ SrRuO }_3\) and Au electrodes. Eur. J. Mech. A Solids 49, 455–466 (2015)

    Article  Google Scholar 

  38. Keip, M.-A., Schrade, D., Thai, H., Schröder, J., Svendsen, B., Müller, R., Gross, D.: Coordinate-invariant phase field modeling of ferro-electrics, part II: application to composites and poly-crystals. GAMM Mitt. 38(1), 115–131 (2015)

    Article  MathSciNet  Google Scholar 

  39. Taylor, R.L.: FEAP—Finite Element Analysis Program. University of California, Berkeley (2014)

    Google Scholar 

  40. Alnæs, M.S., Blechta, J., Hake, J., Johansson, A., Kehlet, B., Logg, A., Richardson, C., Ring, J., Rognes, M.E., Wells, G.N.: The FEniCS project version 1.5. Arch. Numer. Softw. 3(100), 9–23 (2015)

    Google Scholar 

  41. Zäh, D., Miehe, C.: Computational homogenization in dissipative electro-mechanics of functional materials. Comput. Methods Appl. Mech. Eng. 267, 487–510 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  42. Sridhar, A., Keip, M.-A., Miehe, C.: Homogenization in micro-magneto-mechanics. Comput. Mech. 58(1), 151–169 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  43. Lahoche, L., Luk’Yanchuk, I., Pascoli, G.: Stability of vortex phases in ferroelectric easy-plane nano-cylinders. Integr. Ferroelectr. 99(1), 60–66 (2008)

    Article  Google Scholar 

  44. Naumov, I., Bratkovsky, A.M.: Unusual polarization patterns in flat epitaxial ferroelectric nanoparticles. Phys. Rev. Lett. 101(10), 107601 (2008)

    Article  Google Scholar 

  45. Rodriguez, B., Gao, X., Liu, L., Lee, W., Naumov, I., Bratkovsky, A., Hesse, D., Alexe, M.: Vortex polarization states in nanoscale ferroelectric arrays. Nano Lett. 9(3), 1127–1131 (2009)

    Article  Google Scholar 

  46. Seidel, J.: Topological Structures in Ferroic Materials. Springer, Cham (2016)

    Book  Google Scholar 

  47. Wang, J., Zhang, T.-Y.: Size effects in epitaxial ferroelectric islands and thin films. Phys. Rev. B 73(14), 144107 (2006)

    Article  Google Scholar 

  48. Balakrishna, A., Huber, J.: Scale effects and the formation of polarization vortices in tetragonal ferroelectrics. Appl. Phys. Lett. 106(9), 092906 (2015)

    Article  Google Scholar 

  49. Schrade, D., Keip, M.-A., Thai, H., Schröder, J., Svendsen, B., Müller, R., Gross, D.: Coordinate-invariant phase field modeling of ferro-electrics, part I: model formulation and single-crystal simulations. GAMM Mitt. 38(1), 102–114 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

O.N. and M.A.K. acknowledge the financial support of the German Research Foundation (DFG) within the Cluster of Excellence in Simulation Technology (EXC 310). W.D. and R.M. were partially supported by the DFG within Research Group FOR 1509 (MU 1370/8-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.-A. Keip.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nadgir, O., Dornisch, W., Müller, R. et al. A phase-field model for transversely isotropic ferroelectrics. Arch Appl Mech 89, 1057–1068 (2019). https://doi.org/10.1007/s00419-019-01543-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-019-01543-y

Keywords

Navigation