Skip to main content
Log in

Effect of dislocation absorption by surfaces on strain hardening of single crystalline thin films

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

In the paper, by taking advantage of a strain gradient crystal plasticity theory with consideration of dislocation absorption by surfaces, plastic behaviors of thin films with two active slip systems under constrained shear is analytically studied. It is found that the critical loads for the onset of dislocations absorption by surfaces for the two slip systems are size dependent and are greatly affected by the latent hardening in the grain interior, and dislocations absorption by surfaces can significantly change the distributions of the plastic deformation and dislocation density and hence the strain-hardening behaviors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Fleck, N.A., Muller, G.M., Ashby, M.F., Hutchinson, J.W.: Strain gradient plasticity: theory and experiment. Acta Metall. Mater. 42, 475–487 (1994)

    Article  Google Scholar 

  2. McElhaney, K.W., Vlassak, J.J., Nix, W.D.: Determination of indenter tip geometry and indentation contact area for depth-sensing indentation experiments. J. Mater. Res. 13, 1300–1306 (1998)

    Article  Google Scholar 

  3. Gu, X.W., Loynachan, C.N., Wu, Z., Zhang, Y.W., Srolovitz, D.J., Greer, J.R.: Size-dependent deformation of nanocrystalline Pt nanopillars. Nano Lett. 12, 6385–6392 (2012)

    Article  Google Scholar 

  4. Ashby, M.F.: The deformation of plastically non-homogeneous alloys. Philos. Mag. 21, 399–424 (1970)

    Article  Google Scholar 

  5. Van Swygenhoven, H., Derlet, P., Hasnaoui, A.: Atomic mechanism for dislocation emission from nanosized grain boundaries. Phys. Rev. B 66, 024101 (2002)

    Article  Google Scholar 

  6. Spearot, D.E., Jacob, K.I., McDowell, D.L.: Nucleation of dislocations from [001] bicrystal interfaces in aluminum. Acta Mater. 53, 3579–3589 (2005)

    Article  Google Scholar 

  7. Yuasa, M., Nakazawa, T., Mabuchi, M.: Atomic simulations of dislocation emission from Cu/Cu and Co/Cu grain boundaries. Mater. Sci. Eng. A 528, 260–267 (2010)

    Article  Google Scholar 

  8. Li, X., Yang, W.: Size dependence of dislocation-mediated plasticity in Ni single crystals: molecular dynamics simulations. J. Nanomater. 2009, 1–10 (2009)

    Google Scholar 

  9. Ren, J., Sun, Q., Xiao, L., Ding, X., Sun, J.: Size-dependent of compression yield strength and deformation mechanism in titanium single-crystal nanopillars orientated [0001] and [1120]. Mater. Sci. Eng. A 615, 22–28 (2014)

    Article  Google Scholar 

  10. Shan, Z.W., Mishra, R.K., Syed Asif, S.A., Warren, O.L., Minor, A.M.: Mechanical annealing and source-limited deformation in submicrometre-diameter Ni crystals. Nat. Mater. 7, 115–119 (2008)

    Article  Google Scholar 

  11. Wang, Z.J., Li, Q.J., Shan, Z.W., Li, J., Sun, J., Ma, E.: Sample size effects on the large strain bursts in submicron aluminum pillars. Appl. Phys. Lett. 100, 071906 (2012)

    Article  Google Scholar 

  12. Kuroda, M., Tvergaard, V.: On the formulations of higher-order strain gradient crystal plasticity models. J. Mech. Phys. Solids 56, 1591–1608 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gurtin, M.E.: On the plasticity of single crystals: free energy, microforces, plastic-strain gradients. J. Mech. Phys. Solids 48, 989–1036 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gurtin, M.E.: A gradient theory of single-crystal viscoplasticity that accounts for geometrically necessary dislocations. J. Mech. Phys. Solids 50, 5–32 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Groma, I., Csikor, F.F., Zaiser, M.: Spatial correlations and higher-order gradient terms in a continuum description of dislocation dynamics. Acta Mater. 51, 1271–1281 (2003)

    Article  Google Scholar 

  16. Evers, L.P.: Non-local crystal plasticity model with intrinsic SSD and GND effects. J. Mech. Phys. Solids 52, 2379–2401 (2004)

    Article  MATH  Google Scholar 

  17. Bayley, C.J., Brekelmans, W.A.M., Geers, M.G.D.: A comparison of dislocation induced back stress formulations in strain gradient crystal plasticity. Int. J. Solids Struct. 43, 7268–7286 (2006)

    Article  MATH  Google Scholar 

  18. Ekh, M., Bargmann, S., Grymer, M.: Influence of grain boundary conditions on modeling of size-dependence in polycrystals. Acta Mech. 218, 103–113 (2011)

    Article  MATH  Google Scholar 

  19. Cermelli, P., Gurtin, M.E.: Geometrically necessary dislocations in viscoplastic single crystal and bicrystals undergoing small deformation. Int. J. Solids Struct. 39, 6281–6309 (2002)

    Article  MATH  Google Scholar 

  20. Fredriksson, P., Gudmundson, P.: Size-dependent yield strength of thin films. Int. J. Plast. 21, 1834–1854 (2005)

    Article  MATH  Google Scholar 

  21. Fredriksson, P., Gudmundson, P.: Competition between interface and bulk dominated plastic deformation in strain gradient plasticity. Model. Simul. Mater. Sci. Eng. 15, S61–S69 (2007)

    Article  Google Scholar 

  22. Aifantis, K.E., Soer, W.A., De Hosson, J.T.M., Willis, J.R.: Interfaces within strain gradient plasticity: theory and experiments. Acta Mater. 54, 5077–5085 (2006)

    Article  Google Scholar 

  23. Huang, G.-Y., Svendsen, B.: Effect of surface energy on the plastic behavior of crystalline thin films under plane strain constrained shear. Int. J. Fract. 166, 173–178 (2010)

    Article  MATH  Google Scholar 

  24. Hurtado, D.E., Ortiz, M.: Surface effects and the size-dependent hardening and strengthening of nickel micropillars. J. Mech. Phys. Solids 60, 1432–1446 (2012)

    Article  MathSciNet  Google Scholar 

  25. van Beers, P.R.M., McShane, G.J., Kouznetsova, V.G., Geers, M.G.D.: Grain boundary interface mechanics in strain gradient crystal plasticity. J. Mech. Phys. Solids 61, 2659–2679 (2013)

    Article  MathSciNet  Google Scholar 

  26. van Beers, P.R.M., Kouznetsova, V.G., Geers, M.G.D.: Defect redistribution within a continuum grain boundary plasticity model. J. Mech. Phys. Solids 83, 243–262 (2015)

    Article  MathSciNet  Google Scholar 

  27. Peng, X.-L., Huang, G.-Y.: Modeling dislocation absorption by surfaces within the framework of strain gradient crystal plasticity. Int. J. Solids Struct. 72, 98–107 (2015)

    Article  Google Scholar 

  28. Bargmann, S., Svendsen, B., Ekh, M.: An extended crystal plasticity model for latent hardening in polycrystals. Comput. Mech. 48, 631–645 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Bargmann, S., Reddy, B.D., Klusemann, B.: A computational study of a model of single-crystal strain-gradient viscoplasticity with an interactive hardening relation. Int. J. Solids Struct. 51, 2754–2764 (2014)

    Article  Google Scholar 

  30. Klusemann, B., Yalcinkaya, T., Geers, M., Svendsen, B.: Application of nonconvex rate dependent gradient plasticity to the modeling and simulation ofinelastic microstructure development and inhomogeneous material behavior. Comput. Mater. Sci. 80, 51–60 (2013)

    Article  Google Scholar 

  31. Bardella, L., Segurado, J., Panteghini, A., Llorca, J.: Latent hardening size effect in small-scale plasticity. Model. Simul. Mater. Sci. Eng. 21, 055009 (2013)

    Article  Google Scholar 

  32. Le, K.C., Sembiring, P.: Plane constrained shear of single crystal strip with two active slip systems. J. Mech. Phys. Solids 56, 2541–2554 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  33. Ertürk, I., van Dommelen, J.A.W., Geers, M.G.D.: Energetic dislocation interactions and thermodynamical aspects of strain gradient crystal plasticity theories. J. Mech. Phys. Solids 57, 1801–1814 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. Bittencourt, E., Needleman, A., Gurtin, M.E., Van der Giessen, E.: A comparison of nonlocal continuum and discrete dislocation plasticity predictions. J. Mech. Phys. Solids 51, 281–310 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  35. Liu, Z.-L., Zhuang, Z., Liu, X.-M., Zhao, X.-C., Gao, Y.: Bauschinger and size effects in thin-film plasticity due to defect-energy of geometrical necessary dislocations. Acta Mech. Sin. 27, 266–276 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  36. Aghababaei, R., Joshi, S.P.: A crystal plasticity analysis of length-scale dependent internal stresses with image effects. J. Mech. Phys. Solids 60, 2019–2043 (2012)

    Article  MathSciNet  Google Scholar 

  37. Mayeur, J.R., McDowell, D.L.: An evaluation of higher-order single crystal strength models for constrained thin films subjected to simple shear. J. Mech. Phys. Solids 61, 1935–1954 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The supports by the National Key Basic Research Scheme of China under Grant No.2012CB937500 and the National Natural Science Foundation of China (NSFC) under Grant No.11572216 are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gan-Yun Huang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Appendix

Appendix

The factors \(a_i\) and \(b_i (i=1,2,3,4,5,6,7)\) in Eqs. (35) and (36) are expressed as

$$\begin{aligned} a_1= & {} \eta R^{2}\sin ^{2}\theta _1 , a_2 =\eta R^{2}\sin \theta _2 \sin (2\theta _1 -\theta _2 ), \quad a_3 =-\mu (1-\kappa )\sin ^{2}2\theta _1 ,\\ a_4= & {} -\mu (1-\kappa )\sin 2\theta _1 \sin 2\theta _2 , \quad a_5 =-\mu (\cos ^{2}2\theta _1 +\kappa \sin ^{2}2\theta _1 ),\\ a_6= & {} -\mu (\cos 2\theta _1 \cos 2\theta _2 +\kappa \sin 2\theta _1 \sin 2\theta _2 ), \quad a_7 =\mu \cos 2\theta _1 ,\\ b_1= & {} \eta R^{2}\sin \theta _1 \sin (2\theta _2 -\theta _1 ), \quad b_2 =\eta R^{2}\sin ^{2}\theta _2 ,\\ b_3= & {} -\mu (1-\kappa )\sin 2\theta _1 \sin 2\theta _2 , \quad b_4 =-\mu (1-\kappa )\sin ^{2}2\theta _2 ,\\ b_5= & {} -\mu (\cos 2\theta _1 \cos 2\theta _2 +\kappa \sin 2\theta _1 \sin 2\theta _2 ), \quad b_6 =-\mu (\cos ^{2}2\theta _2 +\kappa \sin ^{2}2\theta _2 ),\\ b_7= & {} \mu \cos 2\theta _2. \end{aligned}$$

The constants \(D_{i1} \),\(D_{i2} \) and \(D_{i3} (i=3,4,5)\) associated with \(D_3 ,D_4 \) and \(D_5 \) in Eqs. (37) and (38) are

$$\begin{aligned} D_{31}= & {} \frac{-\left( a_4 b_5 -a_5 b_4 \right) }{2\left( a_2 b_3 -a_3 b_2 -a_1 b_4 +a_4 b_1 \right) }, D_{32} =\frac{-\left( a_4 b_6 -a_6 b_4 \right) }{2\left( a_2 b_3 -a_3 b_2 -a_1 b_4 +a_4 b_1 \right) },\\ D_{33}= & {} \frac{-\left( a_4 b_7 -a_7 b_4 \right) }{2\left( a_2 b_3 -a_3 b_2 -a_1 b_4 +a_4 b_1 \right) }, D_{41} =\frac{\left( a_3 b_2 b_3 -a_3 b_1 b_4 \right) a_5 -\left( a_2 a_3 b_3 -a_1 a_3 b_4 \right) b_5 }{a_3 b_3 \left( a_2 b_3 -a_3 b_2 -a_1 b_4 +a_4 b_1 \right) },\\ D_{42}= & {} \frac{\left( a_3 b_2 b_3 -a_3 b_1 b_4 \right) a_6 -\left( a_2 a_3 b_3 -a_1 a_3 b_4 \right) b_6 }{a_3 b_3 \left( a_2 b_3 -a_3 b_2 -a_1 b_4 +a_4 b_1 \right) },\\ D_{43}= & {} \frac{\left( a_3 b_2 b_3 -a_3 b_1 b_4 \right) a_7 -\left( a_2 a_3 b_3 -a_1 a_3 b_4 \right) b_7 }{a_3 b_3 \left( a_2 b_3 -a_3 b_2 -a_1 b_4 +a_4 b_1 \right) }, \quad D_{51} =\frac{\left( a_3 b_5 -a_5 b_3 \right) }{2\left( a_2 b_3 -a_3 b_2 -a_1 b_4 +a_4 b_1 \right) },\\ D_{52}= & {} \frac{\left( a_3 b_6 -a_6 b_3 \right) }{2\left( a_2 b_3 -a_3 b_2 -a_1 b_4 +a_4 b_1 \right) }, D_{53} =\frac{\left( a_3 b_7 -a_7 b_3 \right) }{2\left( a_2 b_3 -a_3 b_2 -a_1 b_4 +a_4 b_1 \right) }. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, XL., Huang, GY. Effect of dislocation absorption by surfaces on strain hardening of single crystalline thin films. Arch Appl Mech 87, 1333–1345 (2017). https://doi.org/10.1007/s00419-017-1253-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-017-1253-x

Keywords

Navigation