Skip to main content
Log in

Cable’s non-planar coupled vibrations under asynchronous out-of-plane support motions: travelling wave effect

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Cable’s non-planar coupled dynamics under asynchronous out-of-plane support motions is investigated in this paper. The moving boundary difficulty is coped by transforming the small support motions into two resonant boundary modulation terms, and cable’s one-to-one resonant coupled non-planar dynamics is reduced through attacking directly the continuous dynamic equations by the multiple scale method. Two boundary dynamic coefficients are derived, characterizing the boundary modulation effects, which are equal for symmetric out-of-plane modes, while opposite for asymmetric ones. Both cable’s frequency and amplitude (of support deflection) response diagrams, with phase lags between supports, are constructed using numerical continuation algorithms, and the steady-state solutions’ stability and bifurcation properties are determined, based upon which the phase lags’ effects on dynamic responses, or travelling wave effects, are thoroughly investigated, through varying the phase lags.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Rega, G.: Nonlinear vibrations of suspended cables—part I: modeling and analysis. Appl. Mech. Rev. 57, 443–478 (2004)

    Article  Google Scholar 

  2. Ibrahim, R.A.: Nonlinear vibrations of suspended cables—part III: random excitation and interaction with fluid flow. Appl. Mech. Rev. 57, 515–549 (2004)

    Article  Google Scholar 

  3. Irvine, H.M., Caughey, T.K.: The linear theory of free vibrations of a suspended cable. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, pp. 299–315. The Royal Society (1974)

  4. Irvine, H.M.: Cable Structures. Dover Publications, New York (1992)

    Google Scholar 

  5. Triantafyllou, M.: Dynamics of cables, towing cables and mooring systems. Shock Vib. Dig. 23, 3–8 (1991)

    Article  Google Scholar 

  6. Jin, D., Wen, H., Hu, H.: Modeling, dynamics and control of cable systems. Adv. Mech. 34, 304–313 (2004)

    Google Scholar 

  7. Gattulli, V., Martinelli, L., Perotti, F., Vestroni, F.: Nonlinear oscillations of cables under harmonic loading using analytical and finite element models. Comp. Methods Appl. Mech. Eng. 193, 69–85 (2004)

    Article  MATH  Google Scholar 

  8. Xiong, W., Cai, C., Zhang, Y., Xiao, R.: Study of super long span cable-stayed bridges with CFRP components. Eng. Struct. 33, 330–343 (2011)

    Article  Google Scholar 

  9. Hagedorn, P., Schäfer, B.: On non-linear free vibrations of an elastic cable. Int. J. Non Linear Mech. 15, 333–340 (1980)

    Article  MATH  Google Scholar 

  10. Luongo, A., Rega, G., Vestroni, F.: Planar non-linear free vibrations of an elastic cable. Int. J. Non Linear Mech. 19, 39–52 (1984)

    Article  MATH  Google Scholar 

  11. Benedettini, F., Rega, G.: Non-linear dynamics of an elastic cable under planar excitation. Int. J. Non Linear Mech. 22, 497–509 (1987)

    Article  MATH  Google Scholar 

  12. Perkins, N.C.: Modal interactions in the non-linear response of elastic cables under parametric/external excitation. Int. J. Non Linear Mech. 27, 233–250 (1992)

    Article  MATH  Google Scholar 

  13. Benedettini, F., Rega, G., Alaggio, R.: Non-linear oscillations of a four-degree-of-freedom model of a suspended cable under multiple internal resonance conditions. J. Sound Vib. 182, 775–798 (1995)

    Article  Google Scholar 

  14. Cai, Y., Chen, S.: Dynamics of elastic cable under parametric and external resonances. J. Eng. Mech. 120, 1786–1802 (1994)

    Article  Google Scholar 

  15. Lilien, J.-L., Da Costa, A.P.: Vibration amplitudes caused by parametric excitation of cable stayed structures. J. Sound Vib. 174, 69–90 (1994)

    Article  MATH  Google Scholar 

  16. Costa, APd, Martins, J., Branco, F., Lilien, J.L.: Oscillations of bridge stay cables induced by periodic motions of deck and/or towers. J. Eng. Mech. 122, 613–622 (1996)

    Article  Google Scholar 

  17. El-Attar, M., Ghobarah, A., Aziz, T.: Non-linear cable response to multiple support periodic excitation. Eng. Struct. 22, 1301–1312 (2000)

    Article  Google Scholar 

  18. Berlioz, A., Lamarque, C.-H.: A non-linear model for the dynamics of an inclined cable. J. Sound Vib. 279, 619–639 (2005)

    Article  Google Scholar 

  19. Georgakis, C.T., Taylor, C.A.: Nonlinear dynamics of cable stays. Part 1: sinusoidal cable support excitation. J. Sound Vib. 281, 537–564 (2005)

    Article  Google Scholar 

  20. Wang, L., Zhao, Y.: Large amplitude motion mechanism and non-planar vibration character of stay cables subject to the support motions. J. Sound Vib. 327, 121–133 (2009)

    Article  Google Scholar 

  21. Gonzalez-Buelga, A., Neild, S., Wagg, D., Macdonald, J.: Modal stability of inclined cables subjected to vertical support excitation. J. Sound Vib. 318, 565–579 (2008)

    Article  Google Scholar 

  22. Guo, T.D., Kang, H.J., Wang, L.L.: A boundary modulation formulation for cable’s non-planar coupled dynamics under out-of-plane support motion. Arch. Appl. Mech. (2015). doi:10.1007/s00419-015-1058-8

    Google Scholar 

  23. Shaw, S.W., Pierre, C.: Normal modes of vibration for non-linear continuous systems. J. Sound Vib. 169, 319–347 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  24. Nayfeh, A.H.: Nonlinear Interactions. Wiley, New York (2000)

    MATH  Google Scholar 

  25. Pakdemirli, M., Boyaci, H.: Effect of non-ideal boundary conditions on the vibrations of continuous systems. J. Sound Vib. 249, 815–823 (2002)

    Article  Google Scholar 

  26. Ghobarah, A., Aziz, T., El-Attar, M.: Response of transmission lines to multiple support excitation. Eng. Struct. 18, 936–946 (1996)

    Article  Google Scholar 

  27. Rega, G., Lacarbonara, W., Nayfeh, A., Chin, C.: Multiple resonances in suspended cables: direct versus reduced-order models. Int. J. Non Linear Mech. 34, 901–924 (1999)

    Article  MATH  Google Scholar 

  28. Nayfeh, A.H., Arafat, H.N., Chin, C.-M., Lacarbonara, W.: Multimode interactions in suspended cables. J. Vib. Control 8, 337–387 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  29. Lacarbonara, W.: Direct treatment and discretizations of non-linear spatially continuous systems. J. Sound Vib. 221, 849–866 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  30. Nayfeh, A.H., Pai, P.F.: Linear and Nonlinear Structural Mechanics. Wiley, New York (2008)

    MATH  Google Scholar 

  31. Srinil, N., Rega, G.: The effects of kinematic condensation on internally resonant forced vibrations of shallow horizontal cables. Int. J. Non Linear Mech. 42, 180–195 (2007)

    Article  MATH  Google Scholar 

  32. Pakdemirli, M., Nayfeh, S., Nayfeh, A.: Analysis of one-to-one autoparametric resonances in cables—discretization vs. direct treatment. Nonlinear Dyn. 8, 65–83 (1995)

    Article  MathSciNet  Google Scholar 

  33. Lacarbonara, W., Rega, G., Nayfeh, A.: Resonant non-linear normal modes. Part I: analytical treatment for structural one-dimensional systems. Int. J. Non Linear Mech. 38, 851–872 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  34. Nayfeh, A.H., Balachandran, B.: Applied Nonlinear Dynamics: Analytical, Computational and Experimental Methods. Wiley, New York (2008)

    MATH  Google Scholar 

Download references

Acknowledgments

This study is funded by Program for Supporting Young Investigators, Hunan University. And it is also supported by National Science Foundation of China under Grant Nos. 11502076 and 11572117.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tieding Guo.

Appendices

Appendix 1

The suspended cable’s linear modal analysis can be found in references [3, 30]. The in-plane symmetric modes are given by

$$\begin{aligned} \phi _n \left( x \right) =c_n \left[ {1-\tan \left( {\frac{ \omega _n^{\left( \mathrm{in} \right) } }{2}} \right) \sin \omega _n^{\left( \mathrm{in} \right) } x-\cos \omega _n^{\left( \mathrm{in} \right) } x} \right] ,\;n=1,3,5,\ldots \end{aligned}$$
(53)

where \(c_\mathrm{i}\) is the normalization constants. And the associated eigenfrequencies are determined by

$$\begin{aligned} \frac{1}{2}\omega _n^{\left( \mathrm{in} \right) } -\tan \left( {\frac{1}{2}\omega _n^{\left( \mathrm{in} \right) } } \right) -\frac{1}{2\lambda ^{2}}\left( {\omega _n^{\left( \mathrm{in} \right) } } \right) ^{3}=0,\;n=1,3,5,\ldots \end{aligned}$$
(54)

where \(\lambda ^{2}=EA/mgl(8b/l)^{3}\) is the elasto-geometric parameter. The above nonlinear transcendental equations can be solved by the Newton–Raphson method.

The in-plane anti-symmetric modes are

$$\begin{aligned} \phi _n \left( x \right) =\sqrt{2}\sin \left( {n\pi x} \right) ,\;n=2,4,6, \ldots \end{aligned}$$
(55)

with the associated eigenfrequencies as

$$\begin{aligned} \omega _n^{\left( \mathrm{in} \right) } =n\pi ,\;n=2,4,6, \ldots \end{aligned}$$
(56)

And the out-of-plane modes are

$$\begin{aligned} \varphi _m \left( x \right) =\sqrt{2}\sin \left( {m\pi x} \right) ,\;m=1,2,3,\ldots \end{aligned}$$
(57)

with the associated eigenfrequencies as

$$\begin{aligned} \omega _m^{\left( \mathrm{out} \right) } =m\pi ,\;m=1,2,3, \ldots \end{aligned}$$
(58)
Fig. 10
figure 10

Illustrations of the shape functions \({\varPsi }_\mathrm{k}(x)\), a cable model 1 with \(\sigma _{1}=0.0505\), b cable model 2 with \(\sigma _{1}=0.3026\)

Appendix 2

$$\begin{aligned}&\begin{array}{l} {\varPi }_1 \left( x \right) =\alpha /2\left\langle {{\phi }'_n ,{\phi }'_n \;} \right\rangle {y}''+\alpha \left\langle {{y}',{\phi }'_n \;} \right\rangle {\phi }''_n ,\quad {\varPi }_3 \left( x \right) =\alpha /2\left\langle {{\varphi }'_m ,{\varphi }'_m \;} \right\rangle {y}'' \\ {\varPi }_2 \left( x \right) =\alpha /2\left\langle {{\phi }'_n ,{\phi }'_n \;} \right\rangle {y}''+\alpha \left\langle {{y}',{\phi }'_n \;} \right\rangle {\phi }''_n ,\quad {\varPi }_4 \left( x \right) =\alpha /2\left\langle {{\varphi }'_m ,{\varphi }'_m \;} \right\rangle {y}'' \\ \end{array} \end{aligned}$$
(59)
$$\begin{aligned}&{\varPi }_5 \left( x \right) =\alpha \left\langle {{y}',{\phi }'_n \;} \right\rangle {\varphi }''_m ,\quad {\varPi }_6 \left( x \right) =\alpha \left\langle {{y}',{\phi }'_n \;} \right\rangle {\varphi }''_m \end{aligned}$$
(60)
$$\begin{aligned}&\begin{array}{rcl} \chi _1 \left( x \right) &{}=&{}\frac{3\alpha }{2}\phi _n ^{\prime \prime }\left\langle {\phi _n ^{\prime },\phi _n ^{\prime }} \right\rangle +\alpha \phi _n ^{\prime \prime }\left\langle {{y}',{\varPsi }_1 ^{\prime }} \right\rangle +\alpha {y}''\left\langle {\phi _n ^{\prime },{\varPsi }_1 ^{\prime }} \right\rangle +\alpha {\varPsi }_1 ^{\prime \prime }\left\langle {{y}',\phi _n ^{\prime }} \right\rangle \\ &{}&{} \;+2\alpha \phi _n ^{\prime \prime }\left\langle {{y}',{\varPsi }_2 ^{\prime }} \right\rangle +2\alpha {y}''\left\langle {\phi _n ^{\prime },{\varPsi }_2 ^{\prime }} \right\rangle +2\alpha {\varPsi }_2 ^{\prime \prime }\left\langle {{y}',\phi _n ^{\prime }} \right\rangle \\ \end{array} \end{aligned}$$
(61)
$$\begin{aligned}&\begin{array}{rcl} \chi _2 \left( x \right) &{}=&{}\alpha {\phi }''_n \left\langle {{\varphi }'_m ,{\varphi }'_m } \right\rangle +2\alpha \phi _n ^{\prime \prime }\left\langle {{y}',{\varPsi }_4 ^{\prime }} \right\rangle +2\alpha {y}''\left\langle {\phi _n ^{\prime },{\varPsi }_4 ^{\prime }} \right\rangle +2\alpha {\varPsi }_4 ^{\prime \prime }\left\langle {{y}',\phi _n ^{\prime }} \right\rangle \\ &{}&{} +\alpha {y}''\left\langle {{\varphi }'_m ,{\varPsi }_5 ^{\prime }} \right\rangle +\alpha {y}''\left\langle {{\varphi }'_m ,{\varPsi }_6 ^{\prime }} \right\rangle \\ \end{array} \end{aligned}$$
(62)
$$\begin{aligned}&\begin{array}{l} \chi _3 \left( x \right) =\frac{\alpha }{2}{\phi }''_n \left\langle {{\varphi }'_m ,{\varphi }'_m } \right\rangle +\alpha \phi _n ^{\prime \prime }\left\langle {{y}',{\varPsi }_3 ^{\prime }} \right\rangle +\alpha {y}''\left\langle {\phi _n ^{\prime },{\varPsi }_3 ^{\prime }} \right\rangle +\alpha {\varPsi }_3 ^{\prime \prime }\left\langle {{y}',\phi _n ^{\prime }} \right\rangle +\alpha {y}''\left\langle {{\varphi }'_m ,{\varPsi }_6 ^{\prime }} \right\rangle \\ \end{array} \end{aligned}$$
(63)
$$\begin{aligned}&\chi _4 \left( x \right) =\frac{3\alpha }{2}{\varphi }''_m \left\langle {{\varphi }'_m , {\varphi }'_m } \right\rangle +\alpha {\varphi }''_m \left\langle {{y}', {{\varPsi }}'_3 \left( x \right) } \right\rangle +2\alpha {\varphi }''_m \left\langle {{y}', {{\varPsi }}'_4 \left( x \right) } \right\rangle \end{aligned}$$
(64)
$$\begin{aligned}&\chi _5 \left( x \right) =\alpha {\varphi }''_m \left\langle {{\phi }'_n ,{\phi }'_n } \right\rangle +2\alpha {\varphi }''_m \left\langle {{y}',{\varPsi }_2 ^{\prime }} \right\rangle +\alpha {{\varPsi }}''_5 \left\langle {{y}',{\phi }'_n } \right\rangle +\alpha {{\varPsi }}''_6 \left\langle {{y}',{\phi }'_n } \right\rangle \end{aligned}$$
(65)
$$\begin{aligned}&\chi _6 \left( x \right) =\frac{\alpha }{2} {\varphi }''_m \left\langle {{\phi }'_n ,{\phi }'_n } \right\rangle +\alpha {\varphi }''_m \left\langle {{y}',{\varPsi }_1 ^{\prime }} \right\rangle +\alpha {{\varPsi }}''_6 \left\langle {{y}',{\phi }'_n } \right\rangle \end{aligned}$$
(66)

Appendix 3

The shape functions \({\varPsi }_\mathrm{k}(x)\) are illustrated in the following, and they are used to calculate the nonlinear resonant interaction coefficients \(\Gamma _\mathrm{k}\) (Fig. 10).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, T., Kang, H., Wang, L. et al. Cable’s non-planar coupled vibrations under asynchronous out-of-plane support motions: travelling wave effect. Arch Appl Mech 86, 1647–1663 (2016). https://doi.org/10.1007/s00419-016-1141-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-016-1141-9

Keywords

Navigation