Skip to main content
Log in

A finite strain constitutive model for non-quadratic yield criteria and nonlinear kinematic/isotropic hardening: application to sheet metal forming

  • Special
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

In this paper, a finite strain material model for complex plastic anisotropy with nonlinear isotropic and kinematic hardening is consistently derived. The model is based on the classical multiplicative decomposition of the deformation gradient and derived in a thermodynamically consistent way. An important new aspect of the work is the straightforward implementation of general and anisotropic yield criteria into a constitutive model, which is entirely formulated in the reference configuration. Nevertheless, and for the sake of illustrating the potential of the model, in this work a Barlat-type (Yld2004-18p) yield criterion is employed. The kinematic hardening formulation follows the continuum mechanical extension of the classical rheological model of Armstrong–Frederick hardening. The numerical integration of the evolution equations is carried out using the exponential map approach, which is able to preserve plastic incompressibility. For numerical efficiency purposes, the exponential tensor functions are evaluated in a closed form using the spectral decomposition, and special attention is given to the preservation of the internal variables’ symmetry. The model is assessed by means of several numerical simulations for anisotropic materials at finite strains, including sheet metal forming processes with comparison to experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Aretz, H., Barlat, F.: New convex yield functions for orthotropic metal plasticity. Int. J. Nonlin. Mech. 51, 97–111 (2013)

    Article  Google Scholar 

  2. Armstrong, P.J., Frederick, C.O.: A mathematical representation of the multiaxial Bauschinger effect. Central Electricity Generating Board Report, Berkeley Nuclear Laboratories, RD/B/N (1966). p 741

  3. Banabic, D., Aretz, H., Comsa, D.S., Paraianu, L.: An improved analytical description of orthotropy in metallic sheets. Int. J. Plast. 21, 493–512 (2005)

    Article  MATH  Google Scholar 

  4. Barlat, F., Lege, D.J., Brem, J.C.: A six-component yield function for anisotropic materials. Int. J. Plast. 7, 693–712 (1991)

    Article  Google Scholar 

  5. Barlat, F., Brem, J.C., Yoon, J.W., Chung, K., Dick, R.E., Lege, D.J., Pourboghrat, F., Choi, S.H., Chu, E.: Plane stress yield function for aluminum alloy sheets. Part 1: theory. Int. J. Plast. 19, 1297–1319 (2003)

    Article  MATH  Google Scholar 

  6. Barlat, F., Aretz, H., Yoon, J.W., Karabin, M.E., Brem, J.C., Dick, R.E.: Linear transformation-based anisotropic yield functions. Int. J. Plast. 21, 1009–1039 (2005)

    Article  MATH  Google Scholar 

  7. Barlat, F., Grácio, J.J., Lee, M.G., Rauch, E., Vincze, G.: An alternative to kinematic hardening in classical plasticity. Int. J. Plast. 27, 1309–1327 (2011)

    Article  MATH  Google Scholar 

  8. Bertram, A.: An alternative approach to finite plasticity based on material isomorphisms. Int. J. Plast. 52, 353–374 (1998)

    Google Scholar 

  9. Cazacu, O., Barlat, F.: Generalization of Drucker’s yield criterion to orthotropy. Math. Mech. Solids 6, 613–630 (2001)

    Article  MATH  Google Scholar 

  10. Chaboche, J.L.: Time independent constitutive theories for cyclic plasticity. Int. J. Plast. 2, 149–188 (1986)

    Article  MATH  Google Scholar 

  11. Chaboche, J.L.: A review of some plasticity and viscoplasticity constitutive theories. Int. J. Plast. 24, 1642–1693 (2008)

    Article  MATH  Google Scholar 

  12. Choi, Y., Han, C.S., Lee, J.K., Wagoner, R.H.: Modeling multi-axial deformation of planar anisotropic elasto-plastic materials, part I: Theory. Int. J. Plast. 22, 1745–1764 (2006)

    Article  MATH  Google Scholar 

  13. Dettmer, W., Reese, S.: On the theoretical and numerical modelling of Armstrong–Frederick kinematic hardening in the finite strain regime. Comput. Methods Appl. Mech. Eng. 193, 87–116 (2004)

    Article  MATH  Google Scholar 

  14. Eidel, B., Gruttmann, F.: Elastoplastic orthotropy at finite strains: multiplicative formulation and numerical implementation. Comput. Mater. Sci. 28, 732–742 (2003)

    Article  Google Scholar 

  15. Grilo, T.: Development of Computational Anisotropic Hypoelastic- and Hyperelastic-based Models Including Nonlinear Kinematic Hardening. PhD thesis. http://hdl.handle.net/10773/14428 (2015)

  16. Grilo, T.J., Souto, N., Valente, R.A.F., Andrade-Campos, A., Thuillier, S., Alves de Sousa, R.J.: On the development and computational implementation of complex constitutive models and parameters’ identification procedures. Key Eng. Mat. 554–557, 936–948 (2013)

    Article  Google Scholar 

  17. Grilo, T.J., Valente, R.A.F, Alves de Sousa, R.J.: Modelling non-quadratic anisotropic yield criteria and mixed isotropic-nonlinear kinematic hardening: analysis of forward- and backward-Euler formulations. Int. J. Mater. Form. doi:10.1007/s12,289-014-1176-9 (2014)

  18. Han, C.S., Chung, K., Wagoner, R.H., Oh, S.I.: A multiplicative finite elasto-plastic formulation with anisotropic yield functions. Int. J. Plast. 19, 197–211 (2003)

    Article  MATH  Google Scholar 

  19. Henann, D.L., Anand, L.: A large deformation theory for rate-dependent elastic–plastic materials with combined isotropic and kinematic hardening. Int. J. Plast. 25, 1833–1878 (2009)

    Article  Google Scholar 

  20. Hill, R.: A theory of the yielding and plastic flow of anisotropic metals. Proc. R. Soc. Lond. A 193, 281–297 (1948)

    Article  MATH  Google Scholar 

  21. Hill, R.: A user-friendly theory of orthotropic plasticity in sheet metals. Int. J. Mech. Sci. 35, 19–25 (1993)

    Article  MATH  Google Scholar 

  22. Hosford, W.F.: On yield loci of anisotropic cubic metals. In: Proceedings of 7th North American Metalworking Conference, SME, Dearborn, pp. 191–197 (1979)

  23. Hu, W.: An orthotropic yield criterion in a 3-d general stress state. Int. J. Plast. 21, 1771–1796 (2005)

    Article  MATH  Google Scholar 

  24. Kim, J.H., Lee, M., Barlat, F., Wagoner, R.H., Chung, K.: An elasto-plastic constitutive model with plastic strain rate potentials for anisotropic cubic metals. Int. J. Plast. 24, 2298–2334 (2008)

    Article  MATH  Google Scholar 

  25. Lion, A.: Constitutive modelling in finite thermoviscoplasticity: a physical approach based on nonlinear rheological models. Int. J. Plast. 16, 469–494 (2000)

    Article  MATH  Google Scholar 

  26. Menzel, A., Steinmann, P.: Ontfunctions formulation of anisotropic multiplicative elasto-plasticity. Comput. Methods Appl. Mech. Eng. 192, 3431–3470 (2003)

    Article  MATH  Google Scholar 

  27. Miehe, C.: Exponential map algorithm for stress updates in anisotropic multiplicative elastoplasticity for single crystals. Int. J. Numer. Meth. Eng. 39, 3367–3390 (1996)

    Article  MATH  Google Scholar 

  28. Miehe, C., Apel, N.: Anisotropic elastic-plastic analysis of shells at large strains. A comparison of multiplicative and additive approaches to enhanced finite element design and constitutive modelling. Int. J. Numer. Meth. Eng. 61, 2067–2113 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  29. Miehe, C., Apel, N., Lambrecht, M.: Anisotropic additive plasticity in the logarithmic strain space: modular kinematic formulation and implementation based on incremental minimization principles for standard materials. Comput. Methods Appl. Mech. Eng. 191, 5383–5425 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  30. Mollica, F., Rajagopal, K.R., Srinivasa, A.R.: The inelastic behaviour of metals subject to loading reversal. Int. J. Plast. 17, 1119–1146 (2001)

    Article  MATH  Google Scholar 

  31. Papadopoulos, P., Lu, J.: On the formulation and numerical solution of problems in anisotropic finite plasticity. Comput. Methods Appl. Mech. Eng. 190, 4889–4910 (2001)

    Article  MATH  Google Scholar 

  32. Prager, W.: Recent developments in the mathematical theory of plasticity. J. Appl. Phys. 20, 235–241 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  33. Reese, S., Christ, D.: Finite deformation pseudo-elasticity of shape memory alloys—constitutive modelling and finite element implementation. Int. J. Plast. 24, 455–482 (2008)

    Article  MATH  Google Scholar 

  34. Reese, S., Govindjee, S.: A theory of finite viscoelasticity and numerical aspects. Int. J. Solids Struct. 35, 3455–3482 (1998)

    Article  MATH  Google Scholar 

  35. Sansour, C., Karšaj, I., Sorić, J.: A formulation of anisotropic continuum elastoplasticity at finite strains. Part I: modelling. Int. J. Plast. 22, 2346–2365 (2006)

    Article  MATH  Google Scholar 

  36. Schröder, J., Gruttmann, F., Löblein, J.: A simple orthotropic finite elasto-plasticity model based on generalized stress–strain measures. Comput. Mech. 30, 48–64 (2002)

    Article  MATH  Google Scholar 

  37. Shutov, A.V., Kreißig, R.: Finite strain viscoplasticity with nonlinear kinematic hardening: phenomenological modeling and time integration. Comput. Methods Appl. Mech. Eng. 197, 2015–2029 (2008)

    Article  MATH  Google Scholar 

  38. Simo, J.C.: Algorithms for static and dynamic multiplicative plasticity that preserve the classical return mapping schemes of the infinitesimal theory. Comput. Methods Appl. Mech. Eng. 99, 61–112 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  39. Simo, J.C., Hughes, T.J.R.: Computational Inelasticity. Springer, Berlin (1998)

    MATH  Google Scholar 

  40. Alves de Sousa, R.J., Yoon, J.W., Cardoso, R.P.R., Valente, R.A.F., Grácio, J.J.: On the use of a reduced enhanced solid-shell (RESS) element for sheet forming simulations. Int. J. Plast. 23, 490–515 (2007)

    Article  MATH  Google Scholar 

  41. Stoughton, T.B., Green, D.E., Iadicola, M.: Specification for BM3: two-stage channel/cup draw. In: Cao, J., Shi, M.F., Stoughton, T.B., Wang, C.T., Zhang, L. (eds.) Proceedings of Numisheet 05, CP778, vol B, pp. 1157–1172. American Institute of Physics, College Park (2005)

    Google Scholar 

  42. Svendsen, B.: On the modelling of anisotropic elastic and inelastic material behaviour at large deformation. Int. J. Solids Struct. 38, 9579–9599 (2001)

    Article  MATH  Google Scholar 

  43. Taherizadeh, A., Green, D.E., Yoon, J.W.: Evaluation of advanced anisotropic models with mixed hardening for general associated and non-associated flow metal plasticity. Int. J. Plast. 27, 1781–1802 (2011)

    Article  MATH  Google Scholar 

  44. Tsakmakis, C.: Kinematic hardening rules in finite plasticity. Part I: a constitutive approach. Continuum Mech. Thermodyn. 8, 215–231 (1996)

    Article  MATH  Google Scholar 

  45. Vladimirov, I.N., Pietryga, M.P., Reese, S.: On the modelling of non-linear kinematic hardening at finite strains with application to springback - comparison of time integration algorithms. Int. J. Numer. Meth. Eng. 75, 1–28 (2008)

    Article  MATH  Google Scholar 

  46. Vladimirov, I.N., Pietryga, M.P., Reese, S.: Prediction of springback in sheet forming by a new finite strain model with nonlinear kinematic and isotropic hardening. J. Mater. Process. Technol. 209, 4062–4075 (2009)

    Article  Google Scholar 

  47. Vladimirov, I.N., Pietryga, M.P., Reese, S.: Anisotropic finite elastoplasticity with nonlinear kinematic and isotropic hardening and application to sheet metal forming. Int. J. Plast. 26, 659–687 (2010)

    Article  MATH  Google Scholar 

  48. Yoon, J.W., Barlat, F., Dick, R.E., Karabin, M.E.: Prediction of six or eight ears in a drawn cup based on a new anisotropic yield function. Int. J. Plast. 22, 174–193 (2006)

    Article  MATH  Google Scholar 

  49. Yoshida, F., Uemori, T.: A model of large-strain cyclic plasticity and its application to springback simulation. Int. J. Mech. Sci. 45, 1687–1702 (2003)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support by the Grants SFRH/BD/82286/2011 and PTDC/EME-TME/115876/2009 from the Fundação para a Ciência e a Tecnologia, Ministerio da Educação e Ciência (Portugal).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiago J. Grilo.

Appendix: Representation of Hill’s 1948 [20] yield function in the reference configuration

Appendix: Representation of Hill’s 1948 [20] yield function in the reference configuration

Regarding the yield function proposed by Hill [20], the effective stress is given by \(\bar{\sigma }=\sqrt{{\varvec{\eta }}^{*}:{{\mathbb {A}}}:{\varvec{\eta }}^{*}}\). Introducing the relation (20) in this yield function, one obtains

$$\begin{aligned} {\varvec{\eta }}^{*}:{{\mathbb {A}}}:{\varvec{\eta }}^{*}= & {} {{\eta }}_{ij}^{*} {A}_{ijkl} {{\eta }}_{kl}^{*}= \left( {\mathrm{det {\mathbf{F}} }}\right) ^{-2} ({{\mathbf{R}}^{*{\mathrm{T}}}} {\mathbf{F}}^{-\mathrm{T}} {\mathbf{C}}_{p})_{im} {Y}_{mn} ({\mathbf{F}}^{\mathrm{T}} {\mathbf{R}}^{*})_{nj} {A}_{ijkl} ({{\mathbf{R}}^{*{\mathrm{T}}}} {\mathbf{F}}^{-\mathrm{T}} {\mathbf{C}}_{p})_{ko} {Y}_{op} ({\mathbf{F}}^{\mathrm{T}} {\mathbf{R}}^{*})_{pl}\nonumber \\= & {} {Y}_{mn} \bar{A}_{mnop} {Y}_{op} = {\mathbf{Y}}: {\bar{\mathbb {A}}}: {\mathbf{Y}}, \end{aligned}$$
(36)

The fourth-order tensor \({\bar{\mathbb {A}}}\) acts on stress quantities defined in the reference configuration and is related to the anisotropic tensor \({\mathbb {A}}\) following the expression

$$\begin{aligned} {\bar{A}}_{mnop} = \left( {\mathrm{det {\mathbf{F}} }}\right) ^{-2} ({\mathbf{C}}_{p} {\mathbf{F}}^{-1} {{\mathbf{R}}^{*}})_{mi} ({\mathbf{F}}^{\mathrm{T}} {\mathbf{R}}^{*})_{nj}({\mathbf{C}}_{p} {\mathbf{F}}^{-1} {{\mathbf{R}}^{*}})_{ok} ({\mathbf{F}}^{\mathrm{T}} {\mathbf{R}}^{*})_{pl} {A}_{ijkl} \end{aligned}$$
(37)

The fourth-order anisotropic tensor \({\mathbb {A}}\) can be represented by means of structural tensors (see, e.g. [47]), following

$$\begin{aligned} {\mathbb {A}}= a_1\mathbb {I} + a_2{\mathbf{M}}_{1}\otimes {\mathbf{M}}_{1} + a_3{\mathbf{M}}_{2}\otimes {\mathbf{M}}_{2} + a_4({\mathbf{M}}_{1}\otimes {\mathbf{M}}_{2} + {\mathbf{M}}_{2}\otimes {\mathbf{M}}_{1}) + a_5 \mathbb {G}_1 + a_6 \mathbb {G}_2 \end{aligned}$$
(38)

where the auxiliary fourth-order tensors \(\mathbb {G}_1\) and \(\mathbb {G}_2\) are given by

$$\begin{aligned} (G_{\alpha })_{ijkl} = \frac{1}{2} \left( (M_{\alpha })_{ik} \delta _{jl} + (M_{\alpha })_{il} \delta _{jk} + (M_{\alpha })_{jk} \delta _{il} + (M_{\alpha })_{jl} \delta _{ik} \right) , \ \forall \alpha =1,2. \end{aligned}$$
(39)

The coefficients \(a_i\), with \(i=1 \ldots 6\) are related to the classical Hill coefficients (F, G, H, L, M and N). The structural tensors represent the symmetry of the material and are expressed as

$$\begin{aligned} {\mathbf{M}}_{i} = {\mathbf{N}}_{i} \otimes {\mathbf{N}}_{i}, \ \forall i=1,2,3 \end{aligned}$$
(40)

where \({\mathbf{N}}_{i}\) are the privileged directions of the material.

Applying Eq. 37 to the anisotropic tensor defined by Eq. 38, and considering, for the sake of simplicity, only the second term on the right-hand side, it yields

$$\begin{aligned} {\mathbf{M}}_{1}\otimes {\mathbf{M}}_{1} \rightarrow \left( {\mathrm{det {\mathbf{F}} }}\right) ^{-2} ({\mathbf{C}}_{p} {\mathbf{F}}^{-1} {{\mathbf{R}}^{*}})_{mi} ({\mathbf{F}}^{\mathrm{T}} {\mathbf{R}}^{*})_{nj} ({\mathbf{C}}_{p} {\mathbf{F}}^{-1} {{\mathbf{R}}^{*}})_{ok} ({\mathbf{F}}^{\mathrm{T}} {\mathbf{R}}^{*})_{pl} ({{\mathbf{M}}_1})_{ij} ({{\mathbf{M}}_1})_{kl}= ({\bar{\mathbf{M}}_1})_{mn} ({\bar{\mathbf{M}}_1})_{op},\nonumber \\ \end{aligned}$$
(41)

where the structural tensor in the reference configuration is expressed as

$$\begin{aligned} {\bar{\mathbf{M}}}_{1}&= \left( {\mathrm{det {\mathbf{F}} }}\right) ^{-1} {\mathbf{C}}_{p} {\mathbf{F}}^{-1} {{\mathbf{R}}^{*}} {\mathbf{M}}_{1} {{\mathbf{R}}^{*{\mathrm{T}}}} {\mathbf{F}}\nonumber \\&=\left( {\mathrm{det {\mathbf{F}} }}\right) ^{-1} ({\mathbf{C}}_{p} {\mathbf{F}}^{-1} {{\mathbf{R}}^{*}} {\mathbf{N}}_{1}) \otimes ({\mathbf{N}}_{1} {{\mathbf{R}}^{*{\mathrm{T}}}} {\mathbf{F}}) = {\bar{\mathbf{N}}}_{1}^{\prime } \otimes {\bar{\mathbf{N}}}_{1}^{\prime \prime }, \end{aligned}$$
(42)

which is dependent on two privileged directions that evolve distinctly according to

$$\begin{aligned} {\bar{\mathbf{N}}}_{1}^{\prime } = \left( {\mathrm{det {\mathbf{F}} }}\right) ^{-\frac{1}{2}} {\mathbf{C}}_{p} {\mathbf{F}}^{-1} {{\mathbf{R}}^{*}} {\mathbf{N}}_{1} \quad {\mathrm{and}} \quad {\bar{\mathbf{N}}}_{1}^{\prime \prime } = \left( {\mathrm{det {\mathbf{F}} }}\right) ^{-\frac{1}{2}} {\mathbf{N}}_{1} {{\mathbf{R}}^{*{\mathrm{T}}}} {\mathbf{F}}. \end{aligned}$$
(43)

The representation of the remaining terms of Eq. 38 in the reference configuration may be done following the same procedure.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grilo, T.J., Vladimirov, I.N., Valente, R.A.F. et al. A finite strain constitutive model for non-quadratic yield criteria and nonlinear kinematic/isotropic hardening: application to sheet metal forming. Arch Appl Mech 86, 147–163 (2016). https://doi.org/10.1007/s00419-016-1117-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-016-1117-9

Keywords

Navigation