Skip to main content
Log in

Application of stochastic finite element approaches to wood-based products

  • Special
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Due to the natural growing process of wood, the mechanical properties of wooden boards are subject to high variability, mainly introduced by knots and the resulting deviation of the wood fibre directions around them. This variability has a great impact on the serviceability limit state performance of wood-based products, such as glued-laminated timber, and thus should be considered within design concepts. Numerous applications of random process models for numerically representing the fluctuation of the mechanical properties along wooden boards can be found in the literature. But, the corresponding mechanical probabilistic investigation, however, is limited almost exclusively to Monte Carlo simulations so far. For this reason, the focus of this work is laid on alternative probabilistic approaches, in particular the perturbation and the spectral stochastic finite element method. Both methods are combined with several discretization methods for the random process, programmed in a consistent environment, and compared to the Monte Carlo simulation, regarding computational effort as well as quality of results. For this purpose, the second-order moments (mean and standard deviation) of the system response of a glued-laminated timber beam with random lamination stiffness are computed. The performance of the different approaches is compared and, in particular, the influence of the variability of the ‘raw’ material on the structural response is shown. Well-known effects, such as the decrease in the variability of effective properties of GLT with increasing number of lamellas, are numerically reproduced and quantified. Moreover, a significant influence of the correlation length, specifying the rate of material property fluctuation within each lamella, on the effective stiffness of the resulting glued-laminated timber beams is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Blatman, G., Sudret, B.: An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis. Probab. Eng. Mech. 25(2), 183–197 (2010). doi:10.1016/j.probengmech.2009.10.003

    Article  Google Scholar 

  2. Bucher, C.: Computational Analysis of Randomness in Structural Mechanics: Structures and Infrastructures, vol. 3. Illustrated, CRC Press (2009). ISBN: 0203876539, 9780203876534

  3. Bulleit, W.M., Chapman, R.A.: Characterization of the correlation structure of lumber strength properties. Wood Sci. Technol. 38, 285–296 (2004). doi:10.1007/s00226-004-0234-8

    Article  Google Scholar 

  4. Casella, G., Berger, R.L.: Statistical Inference, 2nd edn. Duxbury Press (2001). ISBN: 0534243126

  5. Chen, N.Z., Guedes Soares, C.: Spectral stochastic finite element analysis for laminated composite plates. Comput. Methods Appl. Mech. Eng. 197(51–52), 4830–4839 (2008). doi:10.1016/j.cma.2008.07.003

    Article  MATH  Google Scholar 

  6. Choi, S.K., Grandhi, R.V., Canfield, R.A.: Propagation of non-Gaussian stochastic behavior using the polynomial chaos expansion. In: Bathe, K. (ed.) Computational Fluid and Solid Mechanics 2003, pp. 1896–1899. Elsevier, Oxford (2003). doi:10.1016/B978-008044046-0.50464-4

    Chapter  Google Scholar 

  7. Choi, S.K., Grandhi, R.V., Canfield, R.A.: Structural reliability under non-Gaussian stochastic behavior. Comput. Struct. 82(13–14), 1113–1121 (2004). doi:10.1016/j.compstruc.2004.03.015. (advances in Probabilistic Mechanics and Structural Reliability)

    Article  Google Scholar 

  8. Ehlbeck, J., Colling, F., Görlacher, R.: Einfluss keilgezinkter Lamellen auf die Biegefestigkeit von Brettschichtholzträgern. Überprüfung des Modells mit Hilfe von Trägerversuchen [Influence of finger-joints on the bending strength of GLT beams. Model validation; Published in German]. Holz als Roh- und Werkstoff 43, 439–442 (1985c)

    Article  Google Scholar 

  9. Ehlbeck, J., Colling, F., Görlacher, R.: Einfluss keilgezinkter Lamellen auf die Biegefestigkeit von Brettschichtholzträgern. Eingangsdaten für das Rechenmodell [Influence of finger-joints on the bending strength of GLT beams. Input data for the numerical model; Published in German]. Holz als Roh- und Werkstoff 43, 369–373 (1985a)

    Article  Google Scholar 

  10. Ehlbeck, J., Colling, F., Görlacher, R.: Einfluss keilgezinkter Lamellen auf die Biegefestigkeit von Brettschichtholzträgern. Entwicklung eines Rechenmodells [Influence of finger-joints on the bending strength of GLT beams. Development of a numerical model; Published in German]. Holz als Roh- und Werkstoff 43, 333–337 (1985b)

    Article  Google Scholar 

  11. Elishakoff, I., Ren, Y.: Finite Element Methods for Structures with Large Stochastic Variations. Oxford Texts in Applied and Engineering Mathematics, Oxford University Press (2003). http://books.google.at/books?id=o-dUx0HuXpoC

  12. Falsone, G., Impollonia, N.: A new approach for the stochastic analysis of finite element modelled structures with uncertain parameters. Comput. Methods Appl. Mech. Eng. 191(44), 5067–5085 (2002). doi:10.1016/S0045-7825(02)00437-1

    Article  MATH  Google Scholar 

  13. Falsone, G., Impollonia, N.: About the accuracy of a novel response surface method for the analysis of finite element modeled uncertain structures. Probab. Eng. Mech. 19(19), 53–63 (2004). doi:10.1016/j.probengmech.2003.11.005

    Article  Google Scholar 

  14. Ghanem, R., Kruger, R.: Numerical solution of spectral stochastic finite element systems. Comput. Methods Appl. Mech. Eng. 129(3), 289–303 (1996). http://www.scopus.com/inward/record.url?eid=2-s2.0-0029776146&partnerID=40&md5=fe06a9dd3e81bc39d7cc546559dcaaf8

  15. Ghanem, R.: The nonlinear Gaussian spectrum of log-normal stochastic processes and variables. J. Appl. Mech. 66(4), 964–973 (1999) http://www.scopus.com/inward/record.url?eid=2-s2.0-0033293545&partnerID=40&md5=26f4cbea653a3a606cd043d1ee14fac4

  16. Ghanem, R.G., Doostan, A.: On the construction and analysis of stochastic models: characterization and propagation of the errors associated with limited data. J. Comput. Phys. 217(1), 63–81 (2006). doi:10.1016/j.jcp.2006.01.037

    Article  MathSciNet  MATH  Google Scholar 

  17. Ghanem, R.G., Spanos, P.D.: Stochastic Finite Elements: A Spectral Approach. Springer, New York (2003)

    Google Scholar 

  18. Hurtado, J., Barbat, A.: Monte Carlo techniques in computational stochastic mechanics. Arch. Comput. Methods Eng. 5, 3–29 (1998). doi:10.1007/BF02736747

    Article  MathSciNet  Google Scholar 

  19. Johansson, C.J.: Grading of timber with respect to mechanical properties. In: Thelandersson, S., Larsen, H. (eds.) Timber Engineering, pp. 23–43. Wiley, Chichester (2003)

    Google Scholar 

  20. Kamiński, M., Kleiber, M.: Perturbation based stochastic finite element method for homogenization of two-phase elastic composites. Comput. Struct. 78(6), 811–826 (2000) http://www.scopus.com/inward/record.url?eid=2-s2.0-0342955063&partnerID=40&md5=76aec082bb799c1bbf8e3a8f4ba64ae7

  21. Kamiński, M.: Generalized perturbation-based stochastic finite element method in elastostatics. Comput. Struct. 85(10), 586–594 (2007), http://www.scopus.com/inward/record.url?eid=2-s2.0-33947265438&partnerID=40&md5=05fb74e43816a81b525e5f7df0b1b719

  22. Kamiński, M.: The Stochastic Perturbation Method for Computational Mechanics. Wiley, Chichester (2013) http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470770821.html

  23. Kamiński, M., Świta, P.: Generalized stochastic finite element method in elastic stability problems. Comput. Struct. 89(11–12), 1241–1252 (2011). doi:10.1016/j.compstruc.2010.08.009. (computational Fluid and Solid Mechanics 2011, Proceedings Sixth MIT Conference on Computational Fluid and Solid Mechanics)

    Article  Google Scholar 

  24. Kroese, D.P., Taimre, T., Botev, Z.: Handbook of Monte Carlo Methods. Wiley, Hoboken (2011) http://www.myilibrary.com. ISBN: 9781283072427

  25. Li, C.C., Der Kiureghian, A.: Optimal discretization of random fields. J. Eng. Mech. 119(6), 1136–1154 (1993) http://www.scopus.com/inward/record.url?eid=2-s2.0-0027608710&partnerID=40&md5=cc99c7fcbe667ec7e0678419258e9d5d

  26. Matthies, H.G., Brenner, C.E., Bucher, C.G.: Guedes Soares, C.: Uncertainties in probabilistic numerical analysis of structures and solids-stochastic finite elements. Struct. Saf. 19(3), 283–336 (1997). doi:10.1016/S0167-4730(97)00013-1. (devoted to the work of the Joint Committee on Structural Safety)

    Article  Google Scholar 

  27. Noh, H.C., Park, T.: Monte Carlo simulation-compatible stochastic field for application to expansion-based stochastic finite element method. Comput. Struct. 84(31–32), 2363–2372 (2006). doi:10.1016/j.compstruc.2006.07.001

    Article  MathSciNet  Google Scholar 

  28. Nyström, J.: Automatic measurement of fiber orientation in softwoods by using the tracheid effect. Comput. Electron. Agric. 41, 91–99 (2003). doi:10.1016/S0168-1699(03)00045-0

    Article  Google Scholar 

  29. Olsson, A., Oscarsson, J., Serrano, E., Källsner, B., Johansson, M., Enquist, B.: Prediction of timber bending strength and in-member cross-sectional stiffness variation on basis of local wood fibre orientation. Eur. J. Wood Wood Prod. 71(3), 319–333 (2013)

    Article  Google Scholar 

  30. Panayirci, H., Schuëller, G.: On the capabilities of the polynomial chaos expansion method within SFE analysis: an overview. Arch. Comput. Methods Eng. 18(1), 43–55 (2011) http://www.scopus.com/inward/record.url?eid=2-s2.0-79951852512&partnerID=40&md5=080694c5aa39264829aef06b53541001

  31. Pellissetti, M., Ghanem, R.: Iterative solution of systems of linear equations arising in the context of stochastic finite elements. Adv. Eng. Softw. 31(8–9), 607–616 (2000). doi:10.1016/S0965-9978(00)00034-X

    Article  MATH  Google Scholar 

  32. Petersson, H.: Use of optical and laser scanning techniques as tools for obtaining improved FE-input data for strength and shape stability analysis of wood and timber. In: IV European Conference on Computational Mechanics, Paris (2010)

  33. Sachdeva, S.K., Nair, P.B., Keane, A.J.: Hybridization of stochastic reduced basis methods with polynomial chaos expansions. Probab. Eng. Mech. 21(2), 182–192 (2006). doi:10.1016/j.probengmech.2005.09.003

    Article  Google Scholar 

  34. Sachdeva, S.K., Nair, P.B., Keane, A.J.: On using deterministic FEA software to solve problems in stochastic structural mechanics. Comput. Struct. 85(5–6), 277–290 (2007). doi:10.1016/j.compstruc.2006.10.008. (computational Stochastic Mechanics)

    Article  Google Scholar 

  35. Sakamoto, S., Ghanem, R.: Polynomial chaos decomposition for the simulation of non-Gaussian nonstationary stochastic processes. J. Eng. Mech. 128(2), 190–201 (2002) http://www.scopus.com/inward/record.url?eid=2-s2.0-0036472444&partnerID=40&md5=2fb3d9f6108c11d53fba5a0d0032ca3e

  36. Shinozuka, M., Deodatis, G.: Simulation of stochastic processes by spectral representation. Appl. Mech. Rev. 44(4), 191–204 (1991) http://www.scopus.com/inward/record.url?eid=2-s2.0-84861979006&partnerID=40&md5=8a818ecc2a3a51fbfc013c6772feef2d, cited By (since 1996) 285

  37. Stefanou, G.: The stochastic finite element method: Past, present and future. Comput. Methods Appl. Mech. Eng. 198(9–12), 1031–1051 (2009). doi:10.1016/j.cma.2008.11.007

    Article  MATH  Google Scholar 

  38. Stefanou, G., Papadrakakis, M.: Assessment of spectral representation and Karhunen-Loève expansion methods for the simulation of Gaussian stochastic fields. Comput. Methods Appl. Mech. Eng. 196(21–24), 2465–2477 (2007). doi:10.1016/j.cma.2007.01.009

    Article  MATH  Google Scholar 

  39. Sudret, B., Der Kiureghian, A.: Stochastic finite element methods and reliability: A state-of-the-art report. Report (University of California, Berkeley. Structural Engineering, Mechanics and Materials), Department of Civil and Environmental Engineering, University of California (2000) http://books.google.com/books?id=cRxAHAAACAAJ

  40. Vanmarcke, E.: Random Fields: Analysis and Synthesis. Illustrated, World Scientific (2010). ISBN: 9812562974, 9789812562975

  41. Vanmarcke, E., Shinozuka, M., Nakagiri, S., Schuëller, G., Grigoriu, M.: Random fields and stochastic finite elements. Struct. Saf. 3(3–4), 143–166 (1986). doi:10.1016/0167-4730(86)90002-0

    Article  Google Scholar 

  42. Zhang, J., Ellingwood, B.: Orthogonal series expansions of random fields in reliability analysis. J. Eng. Mech. 120(12), 2660–2677 (1994) http://www.scopus.com/inward/record.url?eid=2-s2.0-0028734886&partnerID=40&md5=ea54aedbba1a9efbbf528b1f70bb2002

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josef Füssl.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Füssl, J., Kandler, G. & Eberhardsteiner, J. Application of stochastic finite element approaches to wood-based products. Arch Appl Mech 86, 89–110 (2016). https://doi.org/10.1007/s00419-015-1112-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-015-1112-6

Keywords

Navigation