Skip to main content

Modeling the Mechanical Behavior of Wood Materials and Timber Structures

  • Chapter
  • First Online:
Springer Handbook of Wood Science and Technology

Abstract

This chapter aims at highlighting the benefit of numerical methods and their broad application in the field of wood, engineered wood-based products (EWPs), structural elements including glued-laminated and cross-laminated timber, and engineered timber structures. It focuses on the hygro-thermo-viscoelastic material behavior of these elements and structures as a consequence of the behavior of wood materials. After motivating the need for models of wood, different types of numerical models and their application for determination of mechanical properties and dimensional stability of wooden boards, strand- and veneer-based engineered wood-based products, including glued-laminated and cross-laminated timber, as well as of connections in EWPs are reviewed and application examples are given. Methods and application examples are furthermore provided for moisture-related stresses and deformations in timber structures, the influence of connections on the structural response, instability of structural systems, and modeling of prefabricated frame structures, before modeling of historical structures of wood is discussed. The chapter ends with discussing bottle-necks in modeling of wood materials and timber structures, which might be a starting point for further improvements and novel modeling strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kollmann, F.F.P., Cote Jr., W.A.: Principles of Wood Science and Technology. I. Solid Wood. Springer, Berlin (1968)

    Book  Google Scholar 

  2. Bodig, J., Jayne, B.: Mechanics of Wood and Wood Composites. Krieger Publishing, Florida (1993)

    Google Scholar 

  3. Dahlblom, O., K., Persson, H., Petersson, S., Ormarsson.: Wood Dry. Res. Tech. Sust. For. Beyond. (2000), 1999

    Google Scholar 

  4. Yamashita, O., Yokochi, H., Miki, T., Kanayama, K.: J. Mater. Process. Technol. 209(12–13), 5239–5244 (2009)

    Google Scholar 

  5. Hofstetter, K., Gamstedt, E.K.: Holzforschung. 63, 130–138 (2009)

    Google Scholar 

  6. De Borst, K., Jenkel, C., Montero, C., Colmars, J., Gril, J., Kaliske, M., Eberhardsteiner, J.: Comput. Struct.. Elsevier,. 127, 53–67 (2013)

    Google Scholar 

  7. Persson, K.: Micromechanical Modelling of Wood and Fibre Properties, Doctoral thesis, Publ. TVSM-1013, Division of Structural Mechanics, Lund University, Sweden (2000)

    Google Scholar 

  8. Füssl, J., Lukacevic, M., Pillwein, S., Pottmann, H.: Computational mechanical modeling of wood – from microstructural characteristics over wood-based products to advanced timber structures. In: Bianconi, F., Filippucci, M. (eds.) Digital Wood Design. Lecture Notes in Civil Engineering (Springer), Cham (2019)

    Google Scholar 

  9. Jost, T., Müller, U., Feist, F.: Konstruktion. 10, 74–82 (2018) (in German)

    Google Scholar 

  10. Reichel, S.: Modelling and Simulation of Hygro-Mechanically Loaded Wooden Structures in Short-term and Long-term. PhD Thesis. Technische Universität Dresden (2015)

    Google Scholar 

  11. Ozyhar, T., Hering, S., Niemz, P.: J. Mater. Sci. 47, 6141–6150 (2012)

    Google Scholar 

  12. Dormieux, L., Kondo, D., Ulm, F.J.: Microporomechanics. Wiley, Ltd (2006)

    Book  Google Scholar 

  13. Kasal, B., Leichti, R.J.: Prog. Struct. Eng. Mech. 7, 3–13 (2005)

    Google Scholar 

  14. Mascia, N.T., Simoni, R.A.: Eng. Fail. Anal. 35, 703–712 (2013)

    Google Scholar 

  15. Ottosen, N.S., Ristinmaa, M.: The Mechanics of Constitutive Modeling. Elsevier, Amsterdam (2005)

    Google Scholar 

  16. Tsai, S., Wu, E.: J. Compos. Mater. 5, 58–80 (1971)

    Google Scholar 

  17. Serrano, E.: Notes on a plasticity model for wood in compression. Report TVSM-7167, Division of Structural Mechanics, Lund University (2020)

    Google Scholar 

  18. Hoffman, O.: J. Compos. Mater. 1(2), 200–206 (1967)

    Google Scholar 

  19. Serrano, E., Gustafsson, P.J.: Mater. Struct. 40, 87–96 (2006)

    Google Scholar 

  20. Serrano, E.: Rational modelling and design in timber engineering applications using fracture mechanics. In: Eberhardsteiner, J., Winter, W., Fadai, A., Pöll, M. (eds.) CD-ROM Proceedings of the World Conference on Timber Engineering (WCTE 2016), August 22–25, 2016, Vienna, Austria. Vienna University of Technology, Austria, ISBN: 978-3-903039-00-1 (2016)

    Google Scholar 

  21. Aicher, S., Gustafsson, P.J., Haller, P., Petersson, H.: Fracture mechanics models for strength analysis of timber beams with a hole or a notch – a report of Rilem TC-133. Report TVSM-7134, Structural Mechanics, Lund University, Sweden (2002)

    Google Scholar 

  22. Lukacevic, M., Lederer, W., Fuessl, J.: Eng. Fract. Mech. 176, 83–99 (2017)

    Google Scholar 

  23. Lukacevic, M., Fuessl, J.: Holzforschung. 70(9), 845–853 (2016)

    Google Scholar 

  24. Danielsson, H., Gustafsson, P.J.: Eng. Fract. Mech. 124, 182–195 (2014)

    Google Scholar 

  25. Schmidt, J., Kaliske, M.: Eng. Struct. 31, 571579 (2009)

    Google Scholar 

  26. Eitelberger, J.: A Multiscale Material Description for Wood below the Fiber Saturation Point with Particular Emphasis on Wood-Water Interactions. Doctoral Thesis. Vienna University of Technology (2011)

    Google Scholar 

  27. Eitelberger, J., Bader, T.K., Hofstetter, K., Jäger, A.: Comput. Mater. Sci. 55, 303–312 (2012)

    Google Scholar 

  28. Hanhijärvi, A., Mackenzie-Helnwein, P.: J. Eng. Mech. 129, 996–1005 (2003)

    Google Scholar 

  29. Ormarsson, S.: Numerical Analysis of Moisture-Related Distortion in Sawn Timber, Doctoral Thesis, Publ 99(7), Chalmers University of Technology, Dep. of Structural Mech. Göteborg, Sweden (1999)

    Google Scholar 

  30. Ranta-Maunus, A.: Holz Roh Werkst. 48, 67–71 (1990)

    Google Scholar 

  31. Salin, J.G.: Holz Roh Werkst., 195–200 (1992)

    Google Scholar 

  32. Dinwoodie, J.M.: Wood nature's Cellular Polymeric Fibre-Composite. The Institute of Metal, London (1989)

    Google Scholar 

  33. Hisada, T.: Bull. For. Prod. Res. Inst. 335, 31–130 (1986)

    Google Scholar 

  34. Ormarsson, S., Dahlblom, O., Petersson, H.: Wood Sci. Technol. 32, 325–334 (1998)

    Google Scholar 

  35. Ottosen, N., Petersson, H.: Introduction to the Finite Element Method. Prentice Hall, ISBN 0-13-473877-2, (1992)

    Google Scholar 

  36. Zienkiewicz, O.C., Taylor, R.L.: The Finite Element Method. McGraw-Hill, London (1991)

    Google Scholar 

  37. Perré, P., Almeida, G., Ayouz, M., Frank, X.: Ann. For. Sci. 73(1), 147–162 (2016)

    Google Scholar 

  38. Landis, E.N., Vasic, S., Davids, W.G.: Exp. Mech. 42(4), 389–394 (2002)

    Google Scholar 

  39. Cown, D.J.: For. Res. Bull. 216 (1999)., 72 pp.

    Google Scholar 

  40. Cown, D.J., Mckinley, R.B., Ball, R.D.: N. Z. J. For. Sci. 32(1), 48–69 (2002)

    Google Scholar 

  41. Ormarsson, S., Cown, D.: Wood Fiber Sci. 37(3), 424–436 (2005)

    Google Scholar 

  42. Dahlblom, O., Petersson, H., Ormarsson, S.: Characterization of modulus of elasticity, European project FAIR CT 96–1915, Improved Spruce Timber Utilization, Final report Sub-task AB1.7 (2000)

    Google Scholar 

  43. Hassani, M.M., Wittel, F.K., Hering, S., Hermann, H.J.: Comput. Methods Appl. Mech. Eng. 283, 1032–1060 (2015)

    Google Scholar 

  44. Hering, S., Saft, S., Resch, E., Niemz, P., Kaliske, M.: Holzforschung. 66, 373–380 (2012)

    Google Scholar 

  45. Kandler, G., Fuessl, J., Eberhardsteiner, J.: Wood Sci. Technol. 49, 1055–1097 (2015)

    Google Scholar 

  46. Leichsenring, F., Jenkel, C., Graf, W., Kaliske, M.: Int. J. Reliab. Saf. 12, 24–45 (2018)

    Google Scholar 

  47. Köhler, J., Dalsgaard Sørensen, J., Havbro Faberc, M.: Struct. Saf. 29, 255–267 (2007)

    Google Scholar 

  48. Côté, W.A.: Cellular Ultrastructure of Woody Plants. Syracuse University Press, New York, NY (1965)

    Google Scholar 

  49. Fengel, D., Wegener, G.: Wood – Chemistry, Ultrastructure, Reactions, 2nd edn. De Gruyter, Berlin, NY (1984)

    Google Scholar 

  50. Kollmann, F., Côté, W.: Principles of Wood Science and Technology, vol. 1. Springer, Berlin, Heidelberg, New York (1968)

    Book  Google Scholar 

  51. Salmén, L., Burgert, I.: Holzforschung. 63, 121–129 (2009)

    Google Scholar 

  52. de Borst, K., Bader, T.K.: J. Theor. Biol. 345, 78–91 (2014)

    Google Scholar 

  53. Bader, T.K.: Mechanical Properties of Sound and Deteriorated Wood at Different Length Scales: Poromechnical Modeling and Experimental Investigations. Doctoral thesis, Vienna University of Technology (2011)

    Google Scholar 

  54. Harrington, J.J.: Hierarchical Modelling of Softwood Hygro-Elastic Properties. Ph.D. thesis. University of Canterbury (2002)

    Google Scholar 

  55. Zaoui, A.: J. Eng. Mech. (ASCE). 128(8), 808–816 (2002)

    Google Scholar 

  56. Kulasinski, K.: Physical and mechanical aspects of moisture adsorption in wood biopolymers investigated with atomistic simulations. Ph.D. thesis (Diss. ETH No. 23046), ETH Zürich (2015)

    Google Scholar 

  57. Ormarsson, S., Dahlblom, O., Johansson, M.: Wood Sci. Technol. 43, 387–403 (2009)

    Google Scholar 

  58. Füssl, J., Li, M., Lukacevic, M., Eberhardsteiner, J., Martin, C.M.: Eng. Struct. 141, 427–443 (2017)

    Google Scholar 

  59. Wittel, F.K., Dill-Langer, G., Kröplin, B.H.: Comput. Mater. Sci. 32(3–4), 594–603 (2005)

    Google Scholar 

  60. Rafsanjani, A., Derome, D., Wittel, F., Carmeliet, J.: Compos. Sci. Technol. 72(6), 744–751 (2012)

    Google Scholar 

  61. Eder, M., Arnould, O., Dunlop, J.W.C., Hornatowska, J., Salmén, L.: Wood Sci. Technol. 47, 163–182 (2013)

    Google Scholar 

  62. Schwiedrzik, J., Raghavan, R., Rüggeberg, M., Hansen, S., Wehrs, J., Adusumalli, R.B., Zimmermann, T., Michler, J.: Philos. Mag. 96(32–34), 3461–3478 (2016)

    Google Scholar 

  63. Derome, D., Griffa, M., Koebel, M., Carmeliet, J.: J. Struct. Biol. 173(1), 180–190 (2011)

    Google Scholar 

  64. Rafsanjani, A., Stiefel, M., Jefimovs, K., Mokso, R., Derome, D., Carmeliet, J.: J. R. Soc. Interface. 11, 20140126 (2014)

    Google Scholar 

  65. Gamstedt, E.K., Bader, T.K., de Borst, K.: Wood Sci. Technol. 47, 183–202 (2013)

    Google Scholar 

  66. Shigo, A.: Die neue Baumbiologie. Bernhard Thalacker, Braunschweig (1990), in German

    Google Scholar 

  67. Müller, U., Gindl-Almutter, W., Keckes, J.: Trees. 32, 1113–1121 (2018)

    Google Scholar 

  68. Lukacevic, M., Fuessl, J.: Eur. J. Wood Wood Prod. 72, 497–508 (2014)

    Google Scholar 

  69. Briggert, A., Olsson, A., Oscarsson, J.: Eur. J. Wood Wood Prod. 74, 725–739 (2016)

    Google Scholar 

  70. Hu, M., Briggert, A., Olsson, A., Johansson, M., Oscarsson, J., Säll, H.: Wood Sci. Technol. (2017)

    Google Scholar 

  71. Longuetaud, F., Mothe, F., Kerautret, B., Krähenbühl, A., Hory, L., Leban, J.M., Debled-Rennesson, I.: Comput. Electron. Agric. 85, 77–89 (2012)

    Google Scholar 

  72. Phillips, G., Bodig, J., Goodman, J.: Wood Science. 14(2), 55–64 (1981)

    Google Scholar 

  73. Foley, C.: Modeling the Effects of Knots in Structural Timber. Doctoral thesis, Lund University (2003)

    Google Scholar 

  74. Pellicane, P.J., Franco, N.: Wood Sci. Technol. 28(4), 261–274 (1994)

    Google Scholar 

  75. Lukacevic, M., Kandler, G., Hu, M., Olsson, A., Füssl, J.: Mater. Des. 166, 107617 (2019)

    Google Scholar 

  76. Lang, R., Kaliske, M.: Wood Sci. Technol. 47, 1051–1070 (2013)

    Google Scholar 

  77. Mueller, U., Gindl, W., Jeronimidis, G.: Trees. 20, 643–648 (2006)

    Google Scholar 

  78. Jungnikl, K., Goebbels, J., Burgert, I., Fratzl, P.: Trees. 23, 605–610 (2009)

    Google Scholar 

  79. Nardin, A., Boström, L., Zaupa, F.: The Effect of Knots on the Fracture of Wood. World Conference of Timber Structures, British Columbia, Canada, July 31–August 3 (2000)

    Google Scholar 

  80. Wagner, L., Bader, T.K., Auty, D., de Borst, K.: Trees. 27, 321–336 (2013)

    Google Scholar 

  81. Dahlblom, O., Petersson, H., Ormarsson, S.: Characterization of spiral grain, European project FAIR CT 96-1915, Improved Spruce Timber Utilization, Final report Sub-task AB1.6., (2000)

    Google Scholar 

  82. Cown, D.J., Young, G.D., Kimberley, M.O.: N. Z. J. For. Sci. 21(2/3), 206–216 (1991)

    Google Scholar 

  83. Lukacevic, M., Füssl, J., Eberhardsteiner, J.: Wood Sci. Technol. 49, 551–576 (2015)

    Google Scholar 

  84. Oscarsson, J., Olsson, A., Enquist, B.: Wood Fiber Sci. 46, 489–501 (2014)

    Google Scholar 

  85. Olsson, A., Oscarsson, J., Serrano, E., Källsner, B., Johansson, M., Enquist, B.: Eur. J. Wood Wood Prod. 71, 319–333 (2013)

    Google Scholar 

  86. Olsson, A., Oscarsson, J.: Eur. J. Wood Wood Prod. 75, 17–31 (2017)

    Google Scholar 

  87. Hu, M., Olsson, A., Johansson, M., Oscarsson, J.: Eur. J. Wood Wood Prod. 76, 1605–1621 (2018)

    Google Scholar 

  88. Viguier, J., Bourreau, D., Bocquet, J.F., Pot, G., Bléron, L., Lanvin, J.D.: Eur. J. Wood Wood Prod. 75, 527–541 (2017)

    Google Scholar 

  89. Hankinson, R.L.: Air Force Inf. Circ. 3(259) (1921)

    Google Scholar 

  90. Blass, H.J., Sandhaas, C.: Timber Engineering – Principles for Design. KIT Scientific Publishing, Karlsruhe (2017)

    Google Scholar 

  91. Hill, R.A.: A theory of the yielding and plastic flow of anisotropic metals. 193, 281–297 (1948)

    Google Scholar 

  92. Johansson, M., Kliger, R.: Wood Fiber Sci. 34, 325–336 (2002)

    Google Scholar 

  93. Astrup, T.: Numerical modeling of deformations in wood. Doctoral thesis, report r-217, Technical University of Denmark, Dep. of Civil Engineering. Kgs. Lyngby, Denmark (2009)

    Google Scholar 

  94. Gereke, T., Hass, P., Niemz, P.: Holzforschung. 64(1), 127–133 (2010)

    Google Scholar 

  95. Ormarsson, S., Dahlblom, O., Johansson, M.: Trees Struct. Funct. 24(1), 105–115 (2010)

    Google Scholar 

  96. Yamamoto, H.: Wood Sci. Technol. 32, 171–182 (1998)

    Google Scholar 

  97. Johansson, M., Ormarsson, S.: Ann. For. Sci. 66(6) (2009)

    Google Scholar 

  98. Ormarsson, S.: Numerical simulations of engineered wood- based products exposed to moisture variations. In: Dill-Langer, G. (ed.) Timber, Bonds, Connections, Structures: Commemorative Publication Honoring the 65th Birthday of Simon Aicher. MPA University of Stuttgart, Stuttgart, Germany (2018)

    Google Scholar 

  99. Salin, J-G.: Investigation of heartwood/sapwood and wood anisotropy influence on timber drying by a two-dimensional simulation model. Montreal, Quebec, Canada, 1992

    Google Scholar 

  100. Perstorper, M.: Publ. 94(2), Division of Steel and Timber Structures, Chalmers University of Technology, Goteborg (1994)

    Google Scholar 

  101. Perstorper, M., Pellicane, P.J., Kliger, I.R., Johansson, G.: Wood Sci. Technol., 157–171 (1995)

    Google Scholar 

  102. Eriksson, J.: Moisture transport and moisture induced distortion in timber – an experimental and numerical study. PhD Thesis, Department of Structural Engineering, Chalmers University of Technology, Gothenburg (2005)

    Google Scholar 

  103. Eriksson, J., Ormarsson, S., Petersson, H.: Holz Roh Werkst. 62, 225–232 (2004)

    Google Scholar 

  104. Eriksson, J., Ormarsson, S., Petersson, H.: Holz Roh Werkst. 63, 423–429 (2005)

    Google Scholar 

  105. Nilsson, J., Ormarsson, S., Johansson, J.: J. Indian Acad. Wood Sci. 14(2), 100–109 (2017)

    Google Scholar 

  106. Dill-Langer, G. (ed.): Timber: Bonds, Connections and Structures. Commemorative publication honouring the 65th Birthday of Simon Aicher. Material Testing Institute (MPA), University of Stuttgart, Division Timber Construction, Germany (2018)

    Google Scholar 

  107. Grönquist, P.: Smart Manufacturing of Curved Mass Timber Components by Self-Shaping. Doctoral thesis, ETH Zürich, (2020)

    Google Scholar 

  108. Larsen, F.: Thermal/Moisture-Related Stresses and Fracture Behaviour in Solid Wood Members during Forced Drying – Modelling and Experimental Study, Doctoral Thesis, DTU-Byg Department of Civil Engineering Technical University of Denmark. Copenhagen, Denmark (2012)

    Google Scholar 

  109. Larsen, F., Ormarsson, S.: Holzforschung. 68(1), 133–140 (2014)

    Google Scholar 

  110. Stanzl-Tschegg, S.E., Tschegg, E.K., Teischinger, A.: Wood Fib. Sci. 26(4), 467–478 (1994)

    Google Scholar 

  111. Vasic, S., Smith, I.: Eng. Fract. Mech. 69, 745–760 (2002)

    Google Scholar 

  112. Stürzenbecher, R.: Mechanical Behavior Engineered Wood Products: Experimental Investigations and Advanced Modeling of Veneer Strand Boards and Cross Laminated Timber. Doctoral thesis, Vienna University of Technology (2010)

    Google Scholar 

  113. Clouston, P.L., Lam, F.: J. Struct. Eng. 62, 1381–1395 (2002)

    Google Scholar 

  114. Ormarsson, S., Sandberg, D.: Wood Mater. Sci. Eng. 3–4, 130–137 (2007)

    Google Scholar 

  115. Sandberg, D., Blomqvist, L.: The importance of material and production parameters for the shape stability of laminated veneer products (Tech. Rep. No. 41). School of Technology and Design, Växjö University (2007) (in Swedish with English abstract)

    Google Scholar 

  116. EN 14080:2013: Glued laminated timber and glued solid timber – Requirements, European Committee for Standardization (CEN), Bruxelles, Belgium (2013)

    Google Scholar 

  117. Blass, H.J., Krüger, O.: Schubverstärkung von Holz mit Holzschrauben und Gewindestangen. Band 15 der Reihe Karlsruher Berichte zum Ingenieurholzbau. KIT Scientific Publishing (2010) (in German)

    Google Scholar 

  118. Persson, J.: Numerical Analysis of Compression Perpendicular to the Grain in Glulam Beams With and Without Reinforcement. Master’s Dissertation, Lund University, LTH, Sweden (2011)

    Google Scholar 

  119. Aicher, S., Höfflin, L., Reinhardt, H.W.: Bautechnik. 84, 867–880 (2007) (in German)

    Google Scholar 

  120. Aicher, S., Tapia, C.: Constr. Build. Mater. 169, 662–677 (2018)

    Google Scholar 

  121. Resch, E., Kaliske, M.: Comput. Struct. 88, 165–177 (2010)

    Google Scholar 

  122. Aicher, S., Schmidt, J., Brunold, S.: Design of Timber Beams with Holes by Means of Fracture Mechanics. CIB-W18/28-19-4, Copenhagen, Denmark (1995)

    Google Scholar 

  123. Danielsson, H., Gustafsson, P.J.: Eur. J. Wood Prod. 69, 407–419 (2011)

    Google Scholar 

  124. Norris, C.B.: Strength of Orthotropic Materials Subjected to Combined Stresses. Misc. Pub FPL-1816. Madison, Wis.: U.S. Dept. of Agriculture, Forest Service, Forest Products Laboratory (1962)

    Google Scholar 

  125. Barenblatt, G.I.: Adv. Appl. Mech. 7, 55–129 (1962)

    Google Scholar 

  126. Dugdale, D.S.: J. Mech. Phys. Solids. 8, 100–104 (1960)

    Google Scholar 

  127. Hillerborg, A., Modéer, M., Peterson, P.E.: Cem. Concr. Res. 6, 773–782 (1976)

    Google Scholar 

  128. Mackenzie-Helnwein, P., Müllner, H.W., Eberhardsteiner, J., Mang, H.A.: Comp. Meth. Appl. Mech. Eng. 194, 2661–2685 (2005)

    Google Scholar 

  129. Kreuzinger, H.: Bauen mit Holz. 101, 34–39 (1999)

    Google Scholar 

  130. Scholz, A.: Ein Beitrag zur Berechnung der Flächentragwerken aus Holz. Doctoral thesis, Technische Universität München; (2004). (in German)

    Google Scholar 

  131. Stuerzenbecher, R., Hofstetter, K., Eberhardsteiner, J.: Compos. Sci. Technol. 70(9), 1368–1379 (2010)

    Google Scholar 

  132. Kandler, G., Fuessl, J., Serrano, E., Eberhardsteiner, J.: Effective stiffness prediction of GLT beams based on stiffness. Wood Sci. Technol. 49, 1101–1121 (2015)

    Google Scholar 

  133. Ehlbeck, J., Colling, Görlacher, R.: Holz Roh Werkst. 43, 333–337, 369–373, 439–442 (1985) (in German)

    Google Scholar 

  134. Blass, H.J., Frese, M., Glos, P., Denzler, J.K., Linsenmann, P., Ranta-Maunus, A.: Zuverlässigkeit von Fichten-Brettschichtholz mit modifiziertem Aufbau. Band 11 der Reihe Karlsruher Berichte zum Ingenieurholzbau, Universitätsverlag Karlsruhe (2008) (in German)

    Google Scholar 

  135. Aicher, S., Hirsch, M., Christian, Z.: Constr. Build. Mater. 124, 1007–1018 (2018)

    Google Scholar 

  136. Baylor, G., Harte, A.M.: Constr. Build. Mater. 47, 680–688 (2013)

    Google Scholar 

  137. Zhu, E.C., Guan, Z.W., Rodd, P.D., Pope, D.J.: Adv. Eng. Soft. 36, 797–805 (2005)

    Google Scholar 

  138. Kozlowski, M., Kadela, M., Hulimka, J.: Proc. Eng. 161, 990–1000 (2016)

    Google Scholar 

  139. Alann, A.: Benefits of Strengthening Timber with Fiber-Reinforced Polymers. PhD thesis, Chalmers University of Technology (2011)

    Google Scholar 

  140. J. Jönsson: Moisture Induced Stresses in Timber Structures. Technical report tvbk-1031. PhD-Thesis, Lund University of Technology, Division of Structural Engineering (2005)

    Google Scholar 

  141. Häglund, M.: Eur. J. Wood Prod. 68, 397–406 (2010)

    Google Scholar 

  142. Fragiacomo, M., Fortino, S., Tononi, D., Usardi, I., Toratti, T.: Eng. Struct. 33, 3071–3078 (2011)

    Google Scholar 

  143. Mohager, S., Toratti, T.: Wood Sci. Technol. 27, 49–59 (1993)

    Google Scholar 

  144. Hanhijärvi, A., Galimard, P., Hoffmeyer, P.: Holz Roh Werkst. 56, 285–293 (1998)

    Google Scholar 

  145. Zhou, H.Z., Zhu, E.C., Fortino, S., Toratti, T.: J Strain Anal. 45, 129–139 (2009)

    Google Scholar 

  146. Qiu, L.P., Zhu, E.C., van de Kuilen, J.W.G.: Eur. J. Wood Prod. 72, 273–283 (2014)

    Google Scholar 

  147. Serrano, E.: Int. J. Adhes. Adhes. 24, 23–23 (2004)

    Google Scholar 

  148. Serrano, E.: Adhesive Joints in Timber Engineering – Modeling and Testing of Fracture Properties. PhD thesis, Lund University (2000)

    Google Scholar 

  149. Koch, H., Eisenhut, L., Seim, W.: Eng. Struct. 48, 727–738 (2013)

    Google Scholar 

  150. Schmidt, J., Kaliske, M.: Holz Roh Werkst. 64, 393–402 (2006) in German

    Google Scholar 

  151. Branco, J.M., Descamps, T.: Constr. Build. Mater. 97, 34–47 (2015)

    Google Scholar 

  152. Feio, A.O., Lourenco, P.B., Machado, J.S.: Mater. Struct. 47, 213–225 (2014)

    Google Scholar 

  153. Dorn, M.: Investigations on the Serviceability Limit State of Dowel-Type Timber Connections. PhD thesis. Technische Universität Wien (Austria) (2012)

    Google Scholar 

  154. McKenzie, W., Karpovich, H.: Wood Sci. Technol. 2(2), 139–152 (1968)

    Google Scholar 

  155. Sandhaas, C.: Mechanical Behavior of Timber Joints with Slotted-in Steel Plates. PhD thesis, Technical University Delft, (2012)

    Google Scholar 

  156. Sandhaas, C., Sarnaghi, A.K., van de Kuilen, J.: Wood Sci. Technol. 54, 31–61 (2020)

    Google Scholar 

  157. Racher, P., Bocquet, J.F.: Electron. J. Struct. Eng. 5, 1–9 (2005)

    Google Scholar 

  158. Toussaint, P.: Application et modélisation du principe de la précontrainte sur des assemblages de structure bois. PhD thesis, Université Henri Poincaré Nancy, (2009)

    Google Scholar 

  159. Reichert, T.: Development of a 3D Lattice Model for Predicting Nonlinear Timber Joint Behavior. PhD thesis, Edinburgh Napier University, (2009)

    Google Scholar 

  160. Bader, T.K., Schweigler, M., Serrano, E., Dorn, M., Enquist, B., Hochreiner, G.: Constr. Build. Mater. 107, 235–246 (2016)

    Google Scholar 

  161. Bader, T.K., Bocquet, J.F., Schweigler, M., Lemaitre, R.: Numerical modeling of the load distribution in multiple fastener joints. Verlag der Technischen Universität Graz (2017)

    Google Scholar 

  162. Rinaldin, G., Amadio, C., Fragiacomo, M.: Earthq. Eng. Struct. Dyn. 42(13), 2023–2042 (2013)

    Google Scholar 

  163. Girhammar, U.A., Gustafsson, P.J., Källsner, B.: Front. Struct. Civ. Eng. 11(2), 143–157 (2017)

    Google Scholar 

  164. Bleron, L., Duchanois, G.: For. Prod. J. 56(3), 44–50 (2006)

    Google Scholar 

  165. Schweigler, M., Bader, T.K., Hochreiner, G., Unger, G., Eberhardsteiner, J.: Constr. Build. Mater. 126, 1020–1033 (2016)

    Google Scholar 

  166. Schweigler, M., Bader, T.K., Vessby, J., Eberhardsteiner, J.: Strain. 53(6) (2017)

    Google Scholar 

  167. Bader, T.K., Vessby, J., Enquist, B.: J. Struct. Eng. ASCE. 144(10) (2018)

    Google Scholar 

  168. Vessby, J., Serrano, E., Olsson, A.: Eng. Struct. 32, 3433–3442 (2010)

    Google Scholar 

  169. Schweigler, M., Bader, T.K., Hochreiner, G., Lemaitre, R.: Compos. Part B. 142, 142–158 (2018)

    Google Scholar 

  170. Nygaard Nonbo, M.: Numerical Simulation of Timber Connections with Slotted-in Steel Plates. Master thesis, Technical University of Denmark, Lyngby (2010)

    Google Scholar 

  171. Sjödin, J., Serrano, E.: Holz Roh Werkst. 66, 447–454 (2008)

    Google Scholar 

  172. Schweigler, M., Bader, T.K., Hochreiner, G.: Eng. Struct. 171, 123–139 (2018)

    Google Scholar 

  173. EN 1995-1-1:2004 + AC:2006 + A1:2008, Eurocode 5: Design of Timber Structures – Part 1–1: General–Common Rules and Rules for Buildings, European Committee for Standardization (CEN), Bruxelles, Belgium (2004)

    Google Scholar 

  174. EN 1990:2002 + A1:2005 + A1:2005/AC:2010, Eurocode: Basis of Structural Design. European Committee for Standardization (CEN), Bruxelles, Belgium (2002)

    Google Scholar 

  175. EN 338:2016, Structural timber – Strength Classes. European Committee for Standardization (CEN), Bruxelles, Belgium (2016)

    Google Scholar 

  176. EN 14080: European Committee for Standardization, Brussels

    Google Scholar 

  177. Ormarsson, S., Dahlblom, O.: Eng. Struct. 49, 182–189 (2013)

    Google Scholar 

  178. Ormarsson, S., Gíslason, Ó.V.: Eur. J. Wood Wood Prod. 74, 307–318 (2016)

    Google Scholar 

  179. Thelandersson, S., Larsen, H.J.: Timber Engineering. Wiley, England (2003)

    Google Scholar 

  180. Porteous, J., Kermani, A.: Structural Timber Design to Eurocode 5. Blackwell Publishing Ltd, UK (2007)

    Book  Google Scholar 

  181. Larsen, H.J., Enjily, V.: Practical Design of Timber Structures to Eurocode 5. Thomas Telford Ltd, UK (2009)

    Book  Google Scholar 

  182. Thelandersson, S., Johansson, M., Johnsson, H., Kliger, R., Mårtensson, A., Norlin, B., Pousette, A., Crocetti, R.: Design of Timber Structures. Swedish Wood (2011)

    Google Scholar 

  183. Crocetti, R., Fröbel, J.: Limträhandbok, Dimensionering av limträkonstruktioner, del 3 [Glulam Handbook, Design of glulam structures, part 3], Färeningen Sveriges Skogsindustrier (2016)

    Google Scholar 

  184. Svensson, S.: Internal stress in wood caused by climate variations. Report tvbk-1013, Dr.-Thesis, Lund Institute of Technology, Department of Structural Engineering, Lund, Sweden (1997)

    Google Scholar 

  185. Angst, V., Malo, K.A.: Holzforschung. 64, 609–617 (2010)

    Google Scholar 

  186. Angst, V., Malo, K.A.: Wood Sci. Technol. 47, 227–241 (2012)

    Google Scholar 

  187. Svensson, S., Toratti, T.: Wood Sci. Technol. 36, 145–156 (2002)

    Google Scholar 

  188. Fortino, S., Mirianon, F., Toratti, T.: Mech. Time Depend Mater. 13, 333–356 (2009)

    Google Scholar 

  189. Fortino, S., Toratti, T.: A three-dimensional moisture-stress fem analysis for timber structures. In: 11th World Conference on Timber Engineering, WCTE 2010, vol. 2, pp. 1248–1255 (2010)

    Google Scholar 

  190. Ormarsson, S., Dahlblom, O., Petersson, H.: Wood Sci. Technol. 33, 407–423 (1999)

    Google Scholar 

  191. Frandsen, H.L., Svensson, S.: Holzforschung. 61, 693–701 (2007)

    Google Scholar 

  192. Gíslason, Ó.V.: Moisture Transport and Moisture Induced Deformations in Wooden Beams. Master’s Thesis, DTU, (2014)

    Google Scholar 

  193. Siau, J.F.: Wood: Influence of Moisture on Physical Properties. Virginia Polytechnic Institute and State University Blacksburg, Virginia (1995)

    Google Scholar 

  194. Blond, M.: Analytical and Numerical Analysis of Moment Stiff Timber Connections. Master thesis, Technical University of Denmark, Lyngby (2011)

    Google Scholar 

  195. Gikonyo, J., Modig, P.: Parameterized and adaptive modelling of mechanical connections in timber frame structures. Master Thesis, Linnaeus University, Faculty of Technology, Department of Building Technology, Växjä (2018)

    Google Scholar 

  196. Johansen, K.W.: IABSE. 9, 249–262 (1949)

    Google Scholar 

  197. Ormarsson, S., Vessby, J., Källsner, B., Filchev, I.: Numerical analysis of failure modes and force distribution in a pitched roof structure of wood. Vienna University of Technology, Austria, Vienna, Austria (2016), ISBN: 978-3-903039-00-1

    Google Scholar 

  198. Sejkot, P., Ormarsson, S., Vessby, J.: Numerical and experimental study of punched metal plate connection used for long-span pitched timber roof truss structure. In: WCTE 2018 World Conference on Timber Engineering, August 20–23, 2018, Seoul, Rep. of Korea (2018)

    Google Scholar 

  199. Sejkot, P., Ormarsson, S., Vessby, J., Källsner, B.: Eng. Struct. 204, 109670 (2020)

    Google Scholar 

  200. Serrano, E., Vessby, J., Girhammar, U.A., Källsner, B.: Design of bottom rails in partially anchored shear walls using fracture mechanics. CIB –W18/44-15-4, Meeting forty-four, Alghero, Italy, August 2011

    Google Scholar 

  201. Ormarsson, S., Johansson, M.: Numerical simulation of structural behaviour of volume modules used for construction of multifamily timber houses. ECCOMAS Thematic Conference Computational Methods in Wood Mechanics – from Material Properties to Timber Structures, Vienna, Austria, June 2017

    Google Scholar 

  202. Ormarsson, S., Johansson, M.: Finite element simulation of global structural behaviour of multifamily timber buildings using prefabricated volume modules. In: WCTE 2018 World Conference on Timber Engineering, August 20–23, 2018, Seoul, Rep. of Korea (2018)

    Google Scholar 

  203. Augustino, D.S., Antwi-Afari, B.A.: Parameterized Modelling of Global Structural Behaviour of Modular Based Two-Storey Timber Structure, Master Thesis, Linnaeus University, Faculty of Technology, Department of Building Technology, Växjö, Sweden, (2018)

    Google Scholar 

  204. Ormarsson, S., Vessby, J., Johansson, M., Kuai, L.: Numerical and experimental study on modular-based timber structures. In: MOC Modular and Offsite Construction Summit 2019, May 21–24, 2019, Banff, AB, Canada (2019)

    Google Scholar 

  205. Ormarsson, S., Vessby, J., Kuai, L.: Numerical and experimental study on light-frame test-modules for modular-based timber structures. In: CompWood 2019 International Conference on Computational Methods in Wood Mechanics – from Material Properties to Timber Structures. ECCOMAS Thematic Conference, June 17–19, 2019, Växjö, Sweden (2019)

    Google Scholar 

  206. Walsh-Korb, Z., Avérous, L.: Prog. Mater. Sci. 102, 167–221 (2019)

    Google Scholar 

  207. Kránitz, K.: Effect of Natural Aging on Wood, Doctoral Thesis, ETH Zürich (2014)

    Google Scholar 

  208. Vorobey, A.: Static and Static and Time-Dependent Mechanical Behaviour of Preserved Archaeological Wood – Case Studies of the Seventeenth Century Warship Vasa. PhD thesis, Uppsala University (2017)

    Google Scholar 

  209. Wagner, L., Bader, T.K., Eberhardsteiner, J., de Borst, K.: Int. Biodeterior. Biodegradation. 93, 223–234 (2014)

    Google Scholar 

  210. Konopka, D., Gebhardt, C., Kaliske, M.: J. Cult. Herit. 27S, S93–S102 (2017)

    Google Scholar 

  211. Dureisseix, D., Marcon, B.: Int. J. Numer. Methods Eng. 88, 228–256 (2011)

    Google Scholar 

  212. Cruz, H., Yeomans, D., Tsakanika, E., Macchioni, N., Jorissen, A.J.M., Touza, M., Mannucci, M., Lourenco, P.B.: Int. J. Archit. Heritage. 9(3), 277–289 (2014)

    Google Scholar 

  213. Bader, M., Dorn, M., Esser, G., Hochreiner, G.: The historic roof structure of the Leopold Wing of the Vienna Hofburg Palace – Structural assessment. 3rd International Conference on Structural Health Assessment of Timber Structures, Wroclaw – Poland, September 9–11, 2015

    Google Scholar 

  214. Afshar, R., van Dijk, N.P., Burhager, I., Gamstedt, E.K.: Eng. Struct. 147, 62–76 (2017)

    Google Scholar 

  215. Hochreiner, G., Bader, T.K., Schweigler, M., Esser, G., Hagmann, S., Glatz, B.: Historic roof structure of the Spanish Riding School in Vienna – Structural Assessment. 3rd International Conference on Structural Health Assessment of Timber Structures, Wroclaw – Poland, September 9–11, 2015

    Google Scholar 

  216. Shanks, J.D., Chang, W.S., Komatsu, K.: Biosyst. Eng. 100, 562–570 (2008)

    Google Scholar 

  217. Hochreiner, G., Bader, T.K., Schweigler, M., Eng. Struct. 131, 421–437 (2017)

    Google Scholar 

  218. Ormarsson, S., Johansson, M.: FE-modell av en volymmodul - spännings- och stabilitetsanalys, Slutrapport på en SHS-förstudie, p. 15 (2017) (in Swedish)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas K. Bader .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bader, T.K., Ormarsson, S. (2023). Modeling the Mechanical Behavior of Wood Materials and Timber Structures. In: Niemz, P., Teischinger, A., Sandberg, D. (eds) Springer Handbook of Wood Science and Technology. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-030-81315-4_10

Download citation

Publish with us

Policies and ethics