Skip to main content
Log in

Stochastic finite element approaches for wood-based products: theoretical framework and review of methods

  • Original
  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Abstract

As a result of the natural growing process of wood, each timber lamella shows a high variability in its mechanical properties, particularly strength and stiffness. It is assumed that those properties are governed by a random process and, subsequently, that the effective stiffness of glued laminated timber also varies randomly. Therefore, a probabilistic approach is necessary. Hence, the latest achievements in probabilistic timber engineering are reviewed and compared. Numerous works rely on random process models for the representation of stiffness and/or strength distributions in single timber lamellas. The statistical evaluation of those random process models, however, is limited almost exclusively to Monte Carlo simulation (MCS) so far. Therefore, this work aims at giving an overview of alternative ways to compute the effective stiffness, by reviewing the framework of stochastic finite element methods. Random process models for the representation of the stiffness distribution in single lamellas are discussed, and the two most promising alternatives to the MCS for computation of effective stiffness parameters, the perturbation and the spectral stochastic finite element method, are evaluated in terms of accuracy and efficiency. Finally, this paper shows alternative and more efficient ways of exploring the stochastic nature of wood, delivering a new basis for more reliable design concepts for timber products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Beichelt F (1997) Stochastische Prozesse für Ingenieure [Stochastic processes for engineers; Published in German]. Teubner, Stuttgart

  • Bender DA, Woeste FE, Schaffer EL, Marx CM (1985) Reliability formulation for the strength and fire endurance of Glued Laminated beams, research paper FPL-460. Technical report, USDA Forest Service, Forest Products Laboratory, Madison

  • Blaß HJ, Frese M, Glos P, Denzler J, Linsenmann P, Ranta-Maunus A (2008) Zuverlässigkeit von Fichten-Brettschichtholz mit modifiziertem Aufbau [Reliability of spruce GLT beams with modificated design; Published in German]. Karlsruher Berichte zum Ingenieurholzbau, Universitätsverlag Karlsruhe, Karlsruhe

    Google Scholar 

  • Blatman G, Sudret B (2010) An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis. Probab Eng Mech 25(2):183–197

    Article  Google Scholar 

  • Brandner R (2012) Stochastic system actions and effects in engineered timber products and structures. PhD thesis, Graz University of Technology

  • Brandner R, Schickhofer G (2014) Spatial correlation of tensile perpendicular to grain properties in norway spruce timber. Wood Sci Technol 48(2):337–352

    Article  CAS  Google Scholar 

  • Bucher C (2009) Computational analysis of randomness in structural mechanics: structures and infrastructures book series. No. 3 in structures and infrastructures series, Taylor and Francis

  • Bulleit WM, Chapman RA (2004) Characterization of the correlation structure of lumber strength properties. Wood Sci Technol 38:285–296

    Article  CAS  Google Scholar 

  • Chen NZ, Guedes Soares C (2008) Spectral stochastic finite element analysis for laminated composite plates. Comput Methods Appl Mech Eng 197(51–52):4830–4839

    Article  Google Scholar 

  • Choi SK, Grandhi RV, Canfield RA (2003) In: Bathe K (ed) Computational fluid and solid mechanics 2003. Elsevier Science Ltd, Oxford, pp 1896–1899

    Chapter  Google Scholar 

  • Choi SK, Grandhi RV, Canfield RA (2004) Structural reliability under non-Gaussian stochastic behavior. Comput Struct 82(13–14):1113–1121

    Article  Google Scholar 

  • Colling F (1990a) Biegefestigkeit von Brettschichtholz-trägern in Abhängigkeit von den festigkeitsrelevanten Einflußgrößen. Einfluß der Trägergröße und der Belastungsart [Bending strength of GLT. Influence of beam size and loading; Published in German]. Holz Roh- Werkst 48:321–326

    Article  Google Scholar 

  • Colling F (1990b) Biegefestigkeit von Brettschichtholz-trägern in Abhängigkeit von den festigkeitsrelevanten Einflußgrößen. Entwicklung eines statistischen Modells [Bending strength of GLT. Development of a probabilistic model; Published in German]. Holz Roh- Werkst 48:269–273

    Google Scholar 

  • Colling F (1990c) Biegefestigkeit von Brettschichtholzträgern in Abhängigkeit von den festigkeitsrelevanten Einflußgrößen. Überprüfung des statistischen Modells mit Hilfe von Trägerversuchen [Bending strength of GLT. Validation; Published in German]. Holz Roh- Werkst 48:391–395

    Article  Google Scholar 

  • Colling F (1990d) Tragfähigkeit von Biegeträgern aus Brettschichtholz in Abhängigkeit von festigkeitsrelevanten Einflußgrößen [Bending strength of GLT; Published in German]. PhD thesis, Fakultät für Bauingenieur- und Vermessungswesen der Universität Karlsruhe

  • Czmoch I, Thelandersson S, Larsen HJ (1991) Effect of within member variability on bending strength of structural timber. In: Proceedings of the international council for research and innovation in building and construction-Working Commission W18 “Timber Structures”, vol 24, pp Paper 24-6-3, Oxford, United Kingdom

  • Der Kiureghian A, Ke JB (1988) The stochastic finite element method in structural reliability. Probab Eng Mech 3(2):83–91

    Article  Google Scholar 

  • Desceliers C, Ghanem R, Soize C (2006) Maximum likelihood estimation of stochastic chaos representations from experimental data. Int J Numer Methods Eng 66(6):978–1001

    Article  Google Scholar 

  • Ehlbeck J, Colling F, Görlacher R (1985a) Einfluss keilgezinkter Lamellen auf die Biegefestigkeit von Brettschichtholzträgern. Eingangsdaten für das Rechenmodell [Influence of finger-joints on the bending strength of GLT beams. Input data for the numerical model; Published in German]. Holz Roh- Werkst 43:369–373

    Article  Google Scholar 

  • Ehlbeck J, Colling F, Görlacher R (1985b) Einfluss keilgezinkter Lamellen auf die Biegefestigkeit von Brettschichtholzträgern. Entwicklung eines Rechenmodells [Influence of finger-joints on the bending strength of GLT beams. Development of a numerical model; Published in German]. Holz Roh- Werkst 43:333–337

    Article  Google Scholar 

  • Ehlbeck J, Colling F, Görlacher R (1985c) Einfluss keilgezinkter Lamellen auf die Biegefestigkeit von Brettschichtholzträgern. Überprüfung des Modells mit Hilfe von Trägerversuchen [Influence of finger-joints on the bending strength of GLT beams. Model validation; Published in German]. Holz Roh- Werkst 43:439–442

    Article  Google Scholar 

  • Elishakoff I, Ren Y (2003) Finite element methods for structures with large stochastic variations. Oxford texts in applied and engineering mathematics. Oxford University Press, Oxford

    Google Scholar 

  • Falsone G, Impollonia N (2002) A new approach for the stochastic analysis of finite element modelled structures with uncertain parameters. Comput Meth Appl Mech Eng 191(44):5067–5085

    Article  Google Scholar 

  • Falsone G, Impollonia N (2004) About the accuracy of a novel response surface method for the analysis of finite element modeled uncertain structures. Probab Eng Mech 19(19):53–63

    Article  Google Scholar 

  • Fink G (2014) Influence of varying material properties on the load-bearing capacity of glued laminated timber. PhD thesis, ETH Zürich

  • Fink G, Frangi A (2013) Modelling the bending strength of glued laminated timber—considering the natural growth characteristics of timber. In: 46th CIB-W18 Meeting 2013, 46, CIB-W18/46-12-6

  • Fink G, Kohler J, Frangi A (2013) Bending tests on glued laminated timber beams with well-known material properties. IBK Report No 350, Institut für Baustatik und Konstruktion der ETH Zürich, Zürich

  • Fink G, Kohler J (2014) Model for the prediction of the tensile strength and tensile stiffness of knot clusters within structural timber. Eur J Wood Prod 72(3):331–341

    Article  Google Scholar 

  • Foschi RO, Barrett JD (1980) Glued-laminated beam strength: a model. J Struct Div 106(8):1735–1754

    Google Scholar 

  • Ghanem R (1999) The nonlinear Gaussian spectrum of log-normal stochastic processes and variables. J Appl Mech 66(4):964–973

    Article  Google Scholar 

  • Ghanem RG, Doostan A (2006) On the construction and analysis of stochastic models: characterization and propagation of the errors associated with limited data. J Comput Phys 217(1):63–81

    Article  Google Scholar 

  • Ghanem RG, Spanos PD (2003) Stochastic finite elements: a spectral approach. Springer, New York

    Google Scholar 

  • Glos P (1978) Zur Bestimmung des Festigkeitsverhaltens von Brettschichtholz bei Druckbeanspruchung aus Werkstoff- und Einwirkungskenngrößen [On obtaining the strength of GLT under compression; Published in German], Berichte zur Zuverlässigkeitstheorie der Bauwerke, Heft 35, SFB 96. Technical report, Technische Universität München

  • Hernandez R, Bender DA, Richburg B, Kline KS (1991) Probabilistic modeling of glued-laminated timber beams. Wood Fiber Sc 24(3):294–306

    Google Scholar 

  • Hurtado J, Barbat A (1998) Monte Carlo techniques in computational stochastic mechanics. Arch Comput Methods Eng 5:3–29

    Article  Google Scholar 

  • Isaksson T (1999) Modelling the variability of bending strength in structural timber: length and load configuration effects. Report TVBK, Lund institute of technology

  • Isaksson T (2003) Structural timber-variability and statistical modelling. In: Thelandersson S, Larsen H (eds) Timber Eng. Wiley, Chichester, pp 45–66

    Google Scholar 

  • Johansson CJ (2003) Grading of timber with respect to mechanical properties. In: Thelandersson S, Larsen H (eds) Timber Eng. Wiley, Chichester, pp 23–43

    Google Scholar 

  • Källsner B, Ditlevsen O (1994) Lengthwise bending strength variation of structural timber, IUFRO S 5.02 Timber Engineering, Sydney

  • Källsner B, Ditlevsen O, Salmela K (1997) Experimental verification of a weak zone model for timber in bending, IUFRO S 5.02 Timber Engineering, Copenhagen

  • Kamiński M (2007) Generalized perturbation-based stochastic finite element method in elastostatics. Comput Struct 85(10):586–594

    Article  Google Scholar 

  • Kamiński M (2013) Stoch Perturbation Method Comput Mech. Wiley, Chichester

    Book  Google Scholar 

  • Kamiński M, Kleiber M (2000) Perturbation based stochastic finite element method for homogenization of two-phase elastic composites. Comput Struct 78(6):811–826

    Article  Google Scholar 

  • Kamiński M, Świta P (2011) Generalized stochastic finite element method in elastic stability problems. Comput Struct 89(11–12):1241–1252

    Article  Google Scholar 

  • Kandler G (2012) Review of stochastic finite-element approaches and assessment of their applicability to wood-based products. Master’s thesis, Vienna University of Technology

  • Kandler G, Füssl J, Serrano E, Eberhardsteiner J (2015) Effective stiffness prediction of GLT beams based on stiffness distributions of individual lamellas. Wood Sci Technol. doi:10.1007/s00226-015-0745-5

    Google Scholar 

  • Kline D, Woeste F, Bendtsen B (1986) Stochastic model for modulus of elasticity of lumber. Wood Fiber Sci 18(2):228–238

    Google Scholar 

  • Köhler J (2007) Reliability of timber structures. Institut für Baustatik und Konstruktion, Vdf Hochschulverlag AG

  • Kroese DP, Taimre T, Botev Z (2011) Handbook of Monte Carlo methods. Wiley, Hoboken

    Book  Google Scholar 

  • Lam F, Varoǧlu E (1991a) Variation of tensile strength along the length of lumber-part 1: experimental. Wood Sci Technol 25:351–359

    Article  Google Scholar 

  • Lam F, Varoǧlu E (1991b) Variation of tensile strength along the length of lumber-part 2: model development and verification. Wood Sci Technol 25:351–359

    Article  Google Scholar 

  • Li CC, Der Kiureghian A (1993) Optimal discretization of random fields. J Eng Mech 119(6):1136–1154

    Article  Google Scholar 

  • Liu PL, Der Kiureghian A (1986) Multivariate distribution models with prescribed marginals and covariances. Probab Eng Mech 1(2):105–112

    Article  Google Scholar 

  • Lukacevic M, Füssl J, Eberhardsteiner J (2015) Discussion of common and new indicating properties for the strength grading of wooden boards. Submitted to Wood Science and Technology

  • MATLAB 2013 (2013) MATLAB Release 2013b. The MathWorks Inc, Natick

    Google Scholar 

  • Matthies HG, Brenner CE, Bucher CG, Guedes Soares C (1997) Uncertainties in probabilistic numerical analysis of structures and solids-stochastic finite elements. Struct Saf 19(3):283–336

    Article  Google Scholar 

  • Neuhaus FH (1981) Elastizitätszahlen von Fichtenholz in Abhängigkeit von der Holzfeuchtigkeit [Elastic modulus of spruce for different moisture content values; Published in German]. PhD thesis, Ruhr-Universität Bochum

  • Noh HC, Park T (2006) Monte Carlo simulation-compatible stochastic field for application to expansion-based stochastic finite element method. Comput Struct 84(31–32):2363–2372

    Article  Google Scholar 

  • Nouy A (2009) Recent developments in spectral stochastic methods for the numerical solution of stochastic partial differential equations. Arch Comput Methods Eng 16:251–285

    Article  Google Scholar 

  • Nyström J (2003) Automatic measurement of fiber orientation in softwoods by using the tracheid effect. Comput Electron Agric 41:91–99

    Article  Google Scholar 

  • Olsson A (2002) Probabilistic analysis and reliability of engineering structures. PhD thesis, Lund University

  • Olsson A, Oscarsson J, Serrano E, Källsner B, Johansson M, Enquist B (2013) Prediction of timber bending strength and in-member cross-sectional stiffness variation on basis of local wood fibre orientation. Eur J Wood Wood Prod 71(3):319–333

    Article  CAS  Google Scholar 

  • Panayirci H, Schuëller G (2011) On the capabilities of the polynomial chaos expansion method within SFE analysis—an overview. Arch Comput Methods Eng 18(1):43–55

    Article  Google Scholar 

  • Pellissetti M, Ghanem R (2000) Iterative solution of systems of linear equations arising in the context of stochastic finite elements. Adv Eng Softw 31(8–9):607–616

    Article  Google Scholar 

  • Petersson H (2010) Use of optical and laser scanning techniques as tools for obtaining improved FE-input data for strength and shape stability analysis of wood and timber. In: IV European conference on computational mechanics, Paris

  • Riberholt H, Madsen P (1979) Strength Distribution of Timber Structures: Measure Variations of the Cross Sectional Strength of Structural Lumber. Rapport // Technical University of Denmark, Structural Research Laboratory, Danmarks tekniske højskole

  • Richburg BA, Bender DA (1992) Localized tensile strength and modulus of elasticity of e-related laminating grades of lumber. Wood Fiber Sci 24(2):225–232

    Google Scholar 

  • Sachdeva SK, Nair PB, Keane AJ (2006) Hybridization of stochastic reduced basis methods with polynomial chaos expansions. Probab Eng Mech 21(2):182–192

    Article  Google Scholar 

  • Sachdeva SK, Nair PB, Keane AJ (2007) On using deterministic FEA software to solve problems in stochastic structural mechanics. Comput Struct 85(5–6):277–290

    Article  Google Scholar 

  • Sakamoto S, Ghanem R (2002) Polynomial chaos decomposition for the simulation of non-Gaussian nonstationary stochastic processes. J Eng Mech 128(2):190–201

    Article  Google Scholar 

  • Shinozuka M, Deodatis G (1991) Simulation of stochastic processes by spectral representation. Appl Mech Rev 44(4):191–204

    Article  Google Scholar 

  • Showalter KL, Woeste FE, Bendtsen BA (1987) Effect of length on tensile strength in structural lumber, research paper FPL-RP-482. Research paper, USDA Forest Service, Forest Products Laboratory, Madison

  • Soize C (2010) Identification of high-dimension polynomial chaos expansions with random coefficients for non-gaussian tensor-valued random fields using partial and limited experimental data. Comput Methods Appl Mech Eng 199(3336):2150–2164

    Article  Google Scholar 

  • Stefanou G (2009) The stochastic finite element method: past, present and future. Comput Methods Appli Mech Eng 198(9–12):1031–1051

    Article  Google Scholar 

  • Stefanou G, Papadrakakis M (2007) Assessment of spectral representation and Karhunen-Loève expansion methods for the simulation of Gaussian stochastic fields. Comput Methods Appl Mech Eng 196(21–24):2465–2477

    Article  Google Scholar 

  • Sudret B, Der Kiureghian A (2000) Stochastic finite element methods and reliability: A state-of-the-art report. Report (University of California, Berkeley. Structural Engineering, Mechanics and Materials), Department of Civil and Environmental Engineering, University of California

  • Taylor SE, Bender DA (1991) Stochastic model for localized tensile strength and modulus of elasticity in lumber. Wood Fiber Sci 23(4):501–519

    Google Scholar 

  • Vanmarcke E (2010) Random fields: analysis and synthesis. World Scientific Publishing Co., Pte. Ltd, Singapore

    Book  Google Scholar 

  • Vanmarcke E, Shinozuka M, Nakagiri S, Schuëller G, Grigoriu M (1986) Random fields and stochastic finite elements. Struct Saf 3(3–4):143–166

    Article  Google Scholar 

  • Wang YT, Foschi RO (1992) Random field stiffness properties and reliability of laminated wood beams. Struct Saf 11(3–4):191–202

    Article  Google Scholar 

  • Wang YT, Lam F, Barrett J (1995) Simulation of correlated modulus of elasticity and compressive strength of lumber with gain factor. Probab Eng Mech 10(2):63–71

    Article  Google Scholar 

  • Xiu D, Karniadakis GE (2002) The Wiener–Askey polynomial chaos for stochastic differential equations. SIAM J Sci Comput 24(2):619–644

    Article  Google Scholar 

  • Zhang J, Ellingwood B (1994) Orthogonal series expansions of random fields in reliability analysis. J Eng Mech 120(12):2660–2677

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of the Austrian Research Promotion Agency (FFG, project number 832803 and 839858) and the wood industry partner CEI-Bois (through the platform ‘Building with Wood’) for funding the research work within project ‘MechWood 2’. Moreover, the authors want to thank Prof. Anders Olsson from Linæus University for his valuable feedback.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg Kandler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kandler, G., Füssl, J. & Eberhardsteiner, J. Stochastic finite element approaches for wood-based products: theoretical framework and review of methods. Wood Sci Technol 49, 1055–1097 (2015). https://doi.org/10.1007/s00226-015-0737-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00226-015-0737-5

Keywords

Navigation