Skip to main content
Log in

Microstructure and rheology of magnetic hybrid materials

  • Special
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

In this paper, an overview on a class of materials with high actual research interest will be given. Magnetic hybrid materials, i.e. liquid or elastic matrices filled with magnetic nano- or micro-particles provide the possibility to influence their mechanical behaviour by application of technically easily realizable magnetic fields. In particular, the viscous and elastic behaviour of magnetic hybrid materials can be influenced by magnetic fields. The physical reason for these changes are field-induced reconfigurations of the microstructure formed by the magnetic particles. Experimental techniques to observe these changes and their relation to changes in the mechanical behaviour of magnetic hybrid materials will be in focus of this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Rabinow, J.: The magnetic fluid clutch. AIEE Trans. 67, 1308–1315 (1948)

    Google Scholar 

  2. Shulman, Z.P., Kordonsky, V.I., Zaltsgendler, E.A., Prokhorov, I.V., Khusid, B.M., Demchuk, S.A.: Structure, physical properties and dynamics of magnetorheological suspensions. Int. J. Multiphase Flow 12, 935–955 (1986)

    Article  Google Scholar 

  3. Weiss, K.D., Carlson, J.D., Nixon, D.A.: Viscoelastic properties of magneto- and electrorheological fluids. J. Intell. Mater. Syst. Struct. 5, 772–775 (1994)

    Article  Google Scholar 

  4. Kordonsky, W.: Magnetorheological effect as a base of new devices and technologies. J. Magn. Magn. Mater. 122, 395–398 (1993)

    Article  Google Scholar 

  5. Carlson, J.D., Catanzarite, D.M., St. Clair, K.A.: Commercial magnetorheological fluid devices. Int. J. Mod. Phys. B 10, 2857 (1996)

    Article  Google Scholar 

  6. Jolly, M.R., Bender, J.W., Carlson, J.D.: Properties and applications of commercial magnetorheological fluids. J. Intell. Mater. Syst. Struct. 10(1), 5–13 (1999)

    Article  Google Scholar 

  7. de Vicente, J., Klingenberg, D.J., Hidalgo-Alvarez, R.: Magnetorheological fluids: a review. Soft Matter 7, 3701 (2011)

    Article  Google Scholar 

  8. Lord Corporation http://www.lordmrstore.com

  9. Rosensweig, R.E.: Ferrohydrodynamics. Cambridge University Press, Cambridge (1985)

    Google Scholar 

  10. Odenbach, S. (ed): Ferrofluids: magnetically controlable fluids and their applications. Springer Lecture Notes in Physics 594 (2002)

  11. Reindl, M., Odenbach, S.: Effect of axial and transverse magnetic fields on the flow behavior of ferrofluids featuring different levels of interparticle interaction. Phys. Fluids 23, 093102 (2011)

    Article  Google Scholar 

  12. Reindl, M., Odenbach, S.: Influence of a homogeneous axial magnetic field on Taylor-Couette flow of ferrofluids with low particle-particle interaction. Exp Fluids 50, 375–384 (2011)

    Article  Google Scholar 

  13. Alexiou, C., Arnold, W., Klein, R.J., et al.: Locoregional cancer treatment with magnetic drug targeting. Cancer Res. 60, 6641–6648 (2000)

    Google Scholar 

  14. Jurgons, R., Seliger, C., Hilpert, A., Trahms, L., Odenbach, S., Alexiou, C.: Drug loaded magnetic nanoparticles for cancer therapy. J. Phys. Condens. Matter 18, 38 (2006)

    Article  Google Scholar 

  15. Odenbach, S.: Magnetoviscous Effects in Ferrofluids. Springer, Berlin (2002). m71

    Book  MATH  Google Scholar 

  16. Jolly, M.R., Carlson, J.D., Munoz, B.C.: The magnetoviscoelastic response of elastomer composites consisting of ferrous particles embedded in a polymer matrix. J. Intell. Mater. Syst. Struct. 7, 613 (1996)

    Article  Google Scholar 

  17. Filipcsei, G., Csetneki, I., Szilágyi, A., Zrínyi, M.: Magnetic field-responsive smart polymer composites. Adv. Polym. Sci. 206, 137–189 (2007)

    Article  Google Scholar 

  18. Reinicke, S., Döhler, S., Tea, S., Krekhova, M., Messing, R., Schmidt, A.M., Schmalz, H.: Magneto-responsive hydrogels based on maghemite/triblock terpolymer hybrid micelles. Soft Matter. 6, 2760–2773 (2010)

    Article  Google Scholar 

  19. Stepanov, G., Borin, D., Odenbach, S.: Magnetorheological effect of magneto-active elastomers containing large particles. J. Phys. Conf. Ser. 149(2009), 012098 (2009)

    Article  Google Scholar 

  20. Borin, DYu., Stepanov, G.V., Odenbach, S.: Tuning the tensile modulus of magnetorheological elastomers with magnetically hard powder. J. Phys. Conf. Ser. 412, 012040 (2013)

    Article  Google Scholar 

  21. Borin, DYu., Stepanov, G.V.: Oscillation measurements on magnetoactive elastomers with complex composition. J. Optoelect. Adv. Mater. 3–4, 249–53 (2013)

    Google Scholar 

  22. Stepanov, G.V., Borin, DYu., Kramarenko, EYu., Bogdanov, V.V., Semerenko, D.A., Storozhenko, P.A.: Magnetoactive elastomer based on magnetically hard filler: synthesis and study of viscoelastic and damping properties. Polym. Sci. Ser. A 56(2014), 603–613 (2014)

    Article  Google Scholar 

  23. Odenbach, S. (ed.): Colloidal Magnetic Fluids, vol. 763. Springer, Berlin (2009)

    Google Scholar 

  24. McTague, J.P.: Magnetoviscosity of magnetic colloids. J. Chem. Phys. 51, 133 (1969)

    Article  Google Scholar 

  25. Shliomis, M.: Effective viscosity of magnetic suspensions. Sov. Phys. JETP 34, 1291–1294 (1972)

    Google Scholar 

  26. Ambacher, O., Odenbach, S., Stierstadt, K.: Rotational viscosity in ferrofluids, Zeitschrift für Physik B- Condensed Matter, 86 (1992)

  27. Odenbach, S., Raj, K.: The influence of particle agglomerates on the magnetoviscous effect in ferrofluids. Magnetohydrodynamics 36, 4 (2000)

    Article  Google Scholar 

  28. Thurm, S., Odenbach, S.: Particle size distribution as key parameter for the flow behaviour of ferrofluids. Phys Fluids 15, 1658–1664 (2003)

    Article  Google Scholar 

  29. Zubarev, A., Iskakova, L.: Theory of structural transformations in ferrofluids: Chains and "gas-liquid" phase transitions. Phys. Rev. E 65, 061406 (2001)

    Article  Google Scholar 

  30. Zubarev, AYu., Odenbach, S., Fleischer, J.: Towards a theory of dynamical properties of polydisperse magnetic fluids: effect of chain like aggregates. Physica A 358(2–4), 475–491 (2005)

    Article  Google Scholar 

  31. Odenbach, S., Störk, H.: Shear dependence of field induced contributions to the viscosity of magnetic fluids at low shear rates. J. Magn. Magn. Mater. 128, 188–194 (1998)

    Article  Google Scholar 

  32. Pop, L., Odenbach, S.: Investigation of the microscopic reason for the magnetoviscous effect in ferrofluids studied by small angle neutron scatting. J. Phys. Condens. Matter 18(38), S2785 (2006)

    Article  Google Scholar 

  33. Günther, D., Borin, DYu., Günther, S., Odenbach, S.: X-ray micro-tomographic characterization of field-structured magnetorheological elastomers. Smart Mater. Struct. 21, 015005 (2012)

    Article  Google Scholar 

  34. Borin, DYu., Günther, D., Hintze, Ch., Heinrich, G., Odenbach, S.: The level of cross-linking and the structure of anisotropic magnetorheological elastomers. J. Magn. Magn. Mater. 324, 3452–3454 (2012)

    Article  Google Scholar 

  35. Borbath, T., Günther, S., Borin, DYu., Gundermann, Th, Odenbach, S.: X-ray microCT analysis of magnetic field-induced phase transitions in magnetorheological elastomers. Smart Mater. Struct. 21, 105018 (2012)

    Article  Google Scholar 

  36. Gundermann, Th, Odenbach, S.: Investigation of the motion of particles in magnetorheological elastomers by X-\({\upmu }\)CT. Smart Mater. Struct. 23, 105013 (2014)

    Article  Google Scholar 

  37. Pessot, C., Cremer, P., Borin, D.Y., Odenbach, S., Löwen, H., Menzel, A.M.: Structural control of elastic moduli in ferrogels and the importance of non-affine deformations. J. Chem. Phys. 141, 124904 (2014)

    Article  Google Scholar 

  38. Tarama, M., Cremer, P., Borin, D.Y., Odenbach, S., Löwen, H., Menzel, A.M.: Tunable dynamic response of magnetic gels: impact of structural properties and magnetic fields. Phys. Rev. E 90, 042311 (2014)

    Article  Google Scholar 

  39. Gitter, K., Odenbach, S.: Experimental investigations on a branched tube model in magnetic drug targeting. J. Magn. Magn. Mater. 323, 1413–1416 (2011)

    Article  Google Scholar 

  40. Gitter, K., Odenbach, S.: Quantitative targeting maps based on experimental investigations for a branched tube model in magnetic drug targeting. J. Magn. Magn. Mater. 323, 3038–3042 (2011)

    Article  Google Scholar 

  41. Gitter, K., Odenbach, S.: Investigations on a branched tube model in magnetic drug targeting-systematic measurements and simulation. IEEE Trans. Magn. 49(1), 343–348 (2013)

    Article  Google Scholar 

  42. Nowak, J., Wolf, D., Odenbach, S.: A rheological and microscopical characterization of biocompatible ferrofluids. J. Magn. Magn. Mater. 354, 98–104 (2014)

    Article  Google Scholar 

  43. Nowak, J., Nowak, C., Odenbach, S.: Consequences of sheep blood used as diluting agent for the magnetoviscous effect in biocompatible ferrofluids. Appl. Rheol. 25(5), 53250 (2015)

    Google Scholar 

Download references

Acknowledgments

The financial support by Deutsche Forschungsgemeinschaft within numerous projects and in the frame of the priority programs SPP1104 and SPP1681, which made this research possible, is gratefully acknowledged. Particular gratitude goes to Dr. D. Borin for helpful discussions and active support in the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Odenbach.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Odenbach, S. Microstructure and rheology of magnetic hybrid materials. Arch Appl Mech 86, 269–279 (2016). https://doi.org/10.1007/s00419-015-1092-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-015-1092-6

Keywords

Navigation