Skip to main content
Log in

A non-classical Timoshenko beam element for the postbuckling analysis of microbeams based on Mindlin’s strain gradient theory

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Based on Mindlin’s strain gradient elasticity theory capturing microscale effects, a new extended Timoshenko beam element is proposed to study the postbuckling behavior of microbeams. So as to develop the size-dependent finite element formulation, the higher-order tensors of energy pairs in the energy functional are vectorized and represented in the quadratic form. In comparison with the standard Timoshenko beam element, the present one needs two further nodal degrees of freedom including derivatives of lateral translation and rotation. The Hermite polynomials are also implemented as shape functions. The developed model is general so that its formulation can be used for modified couple stress, modified strain gradient and classical elasticity theories. In the numerical results, the influences of the small-scale factor, geometrical parameters and boundary conditions on the bifurcation diagrams of microbeams are examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Tilmans, H.A., Elwespoek, M., Fluitman, J.H.: Micro resonant force gauges. Sens. Actuator A 30, 35–53 (1992)

    Article  Google Scholar 

  2. Zook, J.D., Burns, D.W., Guckel, H., Sniegowski, J.J., Engelstad, R.L., Feng, Z.: Characteristics of polysilicon resonant microbeams. Sens. Actuator A 35, 290–294 (1992)

    Article  Google Scholar 

  3. Andrews, M.K., Turner, G.C., Harris, P.D., Harris, I.M.: A resonant pressure sensor based on a squeezed film of gas. Sens. Actuator A 36, 219–226 (1993)

    Article  Google Scholar 

  4. Gupta, R.K., Senturia, S.D.: Pull-in time dynamics as a measure of absolute pressure. In: Proceedings of the IEEE Tenth Annual International Workshop on Microelectromechanical Systems: MEMS ’97, Nagoya, Japan, pp. 51–59. IEEE, New York (1997)

  5. Gui, C., Legtenberg, R., Tilmans, H.A., Fluitman, J.H., Elwenspoek, M.: Nonlinearity and hysteresis of resonant strain gauges. J. Microelectromech. Syst. 7, 122–127 (1998)

    Article  Google Scholar 

  6. Ayela, F., Fournier, T.: An experimental study of anharmonic micromachined silicon resonators. Meas. Sci. Technol. 9, 1821–1830 (1998)

    Article  Google Scholar 

  7. Filippini, D., Andersson, T.P.M., Svensson, S.P.S., Lundstrom, I.: Microplate based biosensing with a computer screen aided technique. Biosens. Bioelectron. 19, 35–41 (2003)

    Article  Google Scholar 

  8. Samaali, H., Najar, F., Choura, S., Nayfeh, A.H., Masmoudi, M.: A double microbeam MEMS ohmic switch for RF-applications with low actuation voltage. Nonlinear Dyn. 63, 719–734 (2011)

    Article  Google Scholar 

  9. Bigelow, A.W., Brenner, D.J., Garty, G., Randers-Pehrson, G.: Single-particle/single-cell ion microbeams as probes of biological mechanisms. IEEE Plasma Sci. 36, 1424–1431 (2008)

    Article  Google Scholar 

  10. Singh, M.P.: Application of biolog FF MicroPlate for substrate utilization and metabolite profiling of closely related fungi. J. Microbiol. Methods 77, 102–108 (2009)

    Article  Google Scholar 

  11. Wang, C.M., Zhang, Y.Y., Ramesh, S.S., Kitipornchai, S.: Buckling analysis of micro- and nano-rods/tubes based on nonlocal Timoshenko beam theory. J. Phys. D Appl. Phys. 39, 3904 (2006)

    Article  Google Scholar 

  12. Chen, X., Ma, L.S., Zheng, Y.M., Lee, D.W.: Theoretical analysis of postbuckling behavior with experimental validation using electrothermal microbeams. Appl. Phys. Lett. 98, 073107–073107-3 (2011)

    Article  Google Scholar 

  13. Ke, L.L., Wang, Y.S., Wang, Z.D.: Thermal effect on free vibration and buckling of size-dependent microbeams. Phys. E 43, 1387–1393 (2011)

    Article  Google Scholar 

  14. Akgöz, B., Civalek, Ö.: Strain gradient elasticity and modified couple stress models for buckling analysis of axially loaded micro-scaled beams. Int. J. Eng. Sci. 49, 1268–1280 (2011)

    Article  Google Scholar 

  15. Atanackovic, T.M., Novakovic, B.N., Vrcelj, Z.: Shape optimization against buckling of micro- and nano-rods. Arch. Appl. Mech. 82, 1303–1311 (2012)

    Article  MATH  Google Scholar 

  16. Akgöz, B., Civalek, Ö.: Buckling analysis of functionally graded microbeams based on the strain gradient theory. Acta Mech. 224, 2185–2201 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  17. Ke, L.L., Yang, J., Kitipornchai, S., Wang, Y.S.: Axisymmetric postbuckling analysis of size-dependent functionally graded annular microplates using the physical neutral plane. Int. J. Eng. Sci. 81, 66–81 (2014)

    Article  MathSciNet  Google Scholar 

  18. Akgöz, B., Civalek, Ö.: Thermo-mechanical buckling behavior of functionally graded microbeams embedded in elastic medium. Int. J. Eng. Sci. 85, 90–104 (2014)

    Article  Google Scholar 

  19. Wang, Y.G., Lin, W.H., Liu, N.: Nonlinear bending and post-buckling of extensible microscale beams based on modified couple stress theory. Appl. Math. Model. 39, 117–127 (2015)

    Article  MathSciNet  Google Scholar 

  20. Fleck, N.A., Muller, G.M., Ashby, M.F., Hutchinson, J.W.: Strain gradient plasticity: theory and experiment. Acta Metall. Mater. 42, 475–487 (1994)

    Article  Google Scholar 

  21. Stölken, J.S., Evans, A.G.: A microbend test method for measuring the plasticity length scale. Acta Mater. 46, 5109–5115 (1998)

    Article  Google Scholar 

  22. McFarland, A.W., Colton, J.S.: Role of material microstructure in plate stiffness with relevance to microcantilever sensors. J. Micromech. Microeng. 15, 1060–1067 (2005)

    Article  Google Scholar 

  23. Mindlin, R.D., Tiersten, H.F.: Effects of couple-stresses in linear elasticity. Arch. Ration. Mech. Anal. 11, 415–448 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  24. Koiter, W.T.: Couple stresses in the theory of elasticity. Proc. K. Ned. Akad. Wet. (B) 67, 17–44 (1964)

    MATH  Google Scholar 

  25. Mindlin, R.D.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 6, 51–78 (1964)

    MathSciNet  Google Scholar 

  26. Mindlin, R.D.: Second gradient of strain and surface tension in linear elasticity. Int. J. Solids Struct. 1, 417–438 (1965)

    Article  Google Scholar 

  27. Yang, F., Chong, A.C.M., Lam, D.C.C., Tong, P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39, 2731–2743 (2002)

    Article  MATH  Google Scholar 

  28. Lam, D.C.C., Yang, F., Chong, A.C.M., Wang, J., Tong, P.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51, 1477–1508 (2003)

    Article  MATH  Google Scholar 

  29. Kahrobaiyan, M.H., Asghari, M., Ahmadian, M.T.: Strain gradient beam element. Finite Elem. Anal. Des. 68, 63–75 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  30. Akgöz, B., Civalek, Ö.: Analysis of micro-sized beams for various boundary conditions based on the strain gradient elasticity theory. Arch. Appl. Mech. 82, 423–443 (2012)

    Article  MATH  Google Scholar 

  31. Akgöz, B., Civalek, Ö.: Modeling and analysis of micro-sized plates resting on elastic medium using the modified couple stress theory. Meccanica 48, 863–873 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  32. Akgöz, B., Civalek, Ö.: Shear deformation beam models for functionally graded microbeams with new shear correction factors. Compos. Struct. 112, 214–225 (2014)

    Article  Google Scholar 

  33. Zhang, B., He, Y., Liu, D., Gan, Z., Shen, L.: Non-classical Timoshenko beam element based on the strain gradient elasticity theory. Finite Elem. Anal. Des. 79, 22–39 (2014)

    Article  MathSciNet  Google Scholar 

  34. Ansari, R., Faghih Shojaei, M., Mohammadi, V., Gholami, R., Rouhi, H.: Nonlinear vibration analysis of microscale functionally graded Timoshenko beams using the most general form of strain gradient elasticity. J. Mech. 30, 161–172 (2014)

    Article  Google Scholar 

  35. Ansari, R., Gholami, R., Faghih Shojaei, M., Mohammadi, V., Sahmani, S.: Size-dependent bending, buckling and free vibration of functionally graded Timoshenko microbeams based on the most general strain gradient theory. Compos. Struct. 100, 385–397 (2013)

    Article  Google Scholar 

  36. Keller, H.B.: Numerical Solution of Bifurcation and Nonlinear Eigenvalue Problems, Applications of Bifurcation Theory (Proc. Adv. Sem., Univ. Wisconsin, Madison, Wis., 1976), pp. 359–384. Academic Press, New York (1977)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Ansari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ansari, R., Faghih Shojaei, M., Ebrahimi, F. et al. A non-classical Timoshenko beam element for the postbuckling analysis of microbeams based on Mindlin’s strain gradient theory. Arch Appl Mech 85, 937–953 (2015). https://doi.org/10.1007/s00419-015-1002-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-015-1002-y

Keywords

Navigation