Skip to main content
Log in

Order in chaotic pseudoplastic flow between coaxial cylinders

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Order is found within the chaotic nonlinear flow between rotating coaxial cylinders. The flow stability analysis is carried out for a pseudoplastic fluid through bifurcation diagram and Lyapunov exponent histogram. The fluid is assumed to follow the Carreau–Bird model, and mixed boundary conditions are imposed. The low-order dynamical system, resulted from Galerkin projection of the conservation of mass and momentum equations, includes additional nonlinear terms in the velocity components originated from the shear-dependent viscosity. It is observed that the base flow loses its radial flow stability to the vortex structure at a lower critical Taylor number, as the shear-thinning effects increase. The emergence of the vortices corresponds to the onset of a supercritical bifurcation, which is also seen in the flow of a linear fluid. However, unlike the Newtonian case, shear-thinning Taylor vortices lose their stability as the Taylor number reaches a second critical number corresponding to the onset of a Hopf bifurcation. Complete flow field together with viscosity maps are given for different scenarios in the bifurcation diagram.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Taylor G.I.: Stability of a viscous liquid contained between two rotating cylinders. Phil. Trans. Royal Soc. Lond. Ser. A 223, 289–343 (1923)

    Article  MATH  Google Scholar 

  2. Ashrafi N., Khayat R.: Shear-thinning-induced chaos in Taylor-Couette flow. Phys. Rev. E 61(2), 1455–1467 (2000)

    Article  MathSciNet  Google Scholar 

  3. Kuhlmann H.: Model for Taylor Couette flow. Phys. Rev. A 32(3), 1703–1707 (1985)

    Article  Google Scholar 

  4. Hoffmann C., Altmeyer S., Pinter A., Lücke M.: Transitions between Taylor vortices and spirals via wavy Taylor vortices and wavy spirals. New J. Phys. 11, 1–24 (2009)

    Google Scholar 

  5. Lorenz E.N.: Deterministic nonperiodic flows. J. Atmos. Sci. 20, 130 (1963)

    Article  Google Scholar 

  6. Berger H.R.: Mode analysis of Taylor-Couette flow in finite gaps. ZAMM Z. Angew. Math. Mech. 79(2), 91–96 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Kuhlmann H., Roth D., Lücke M.: Taylor flow and harmonic modulation of the driving force. Phys. Rev. A 39, 745 (1988)

    Article  Google Scholar 

  8. Sparrow C.: The Lorenz Equations. Springer, New York (1983)

    MATH  Google Scholar 

  9. Li Z., Khayat R.: A non-linear dynamical system approach to finite amplitude Taylor-Vortex flow of shear-thinning fluids. Int. J. Numer. Meth. Fluids. 45, 321–340 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Baumert B.M., Muller S.J.: Flow visualization of the elastic Taylor-Couette flow in Boger fluids. Rheol. Acta 34, 147 (1995)

    Article  Google Scholar 

  11. Ashrafi N., Binding D.M., Walters K.: Cavitation effects in eccentric-cylinder flows of Newtonian and non-Newtonian Fluids. Chem. Eng. Sci. 56, 5565–5574 (2001)

    Article  Google Scholar 

  12. Dusting J., Balbani S.: Mixing in a Taylor-Couette reactor in the non-wavy regime. Chem. Eng. Sci 64, 3103–3111 (2009)

    Article  Google Scholar 

  13. Larson R.G.: Instabilities in viscoelastic flows. Rheol. Acta 31, 213 (1992)

    Article  Google Scholar 

  14. Khayat R., Ashrafi N.: A Low-dimensional approach to nonlinear plane-Poiseulle flow of viscoelastic fluids. Phys. Fluids 14(5), 1757–1767 (2002)

    Article  Google Scholar 

  15. Escudier M.P., Gouldson I.W., Jonset D.M.: Taylor vortices in Newtonian and shear-thinning liquids. Proc. R. Soc. Lond. A 449, 155–176 (1995)

    Article  MATH  Google Scholar 

  16. Bird R.B., Curtiss C.F., Armstrong R.C., Hassager O.: Dynamics of Polymeric Liquids, vol. 1. 2nd edn. Wiley, New York (1987)

    Google Scholar 

  17. Larson R.G., Shaqfeh E.S.G., Muller S.J.: A purely elastic instability in Taylor-Couette flow. J. Fluid Mech. 218, 573 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  18. Khellaf K., Lauriat G.: Numerical study of heat transfer in a non-Newtonian Carreau-fluid between rotating concentric vertical cylinders. J. Non-Newtonian Fluid Mech. 89, 45–61 (2000)

    Article  MATH  Google Scholar 

  19. Pascal J.P., Rasmussen H.: Stability of power law fluid flow between rotating cylinders. Dyn. Syst 10, 65–93 (1995)

    Article  MathSciNet  Google Scholar 

  20. Veronis G.: Motions at subcritical values of the Rayleigh number in a rotating fluid. J. Fluid Mech 24, 545 (1966)

    Article  MathSciNet  Google Scholar 

  21. Drazin P.G., Reid W.H.: Hydrodynamic Stability. Cambridge University press, Cambridge (1981)

    MATH  Google Scholar 

  22. Criminale W.O., Jackson T.L., Joslin R.D.: Theory and Computation in Hydrodynamic Stability. Cambridge University press, Cambridge (2003)

    Book  Google Scholar 

  23. Yorke, J.A., Yorke, E.D.: Hydrodynamic Instabilities and the Transition to turbulence. In: Swinney, H.L., Gollub, J.P. (eds.) Springer, Berlin (1981)

  24. Yahata H.: Temporal development of the Taylor vortices in a rotating field 1. Prog. Theor. Phys. 59, 1755 (1978)

    Article  Google Scholar 

  25. Thomas R.H., Walters K.: The stability of elastico-viscous flow between rotating cylinders. Part 1. J. Fluid Mech. 18, 33 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  26. Coronado-Matutti O., Souza Mendes P.R., Carvalho M.S.: Instability of inelastic shear-thinning liquids in a Couette flow between concentric cylinders. J. Fluid Eng. 126, 385–390 (2004)

    Article  Google Scholar 

  27. Pirro D., Quadrio M.: Direct numerical simulation of turbulent Taylor-Couette flow. Eur. J Mech. B Fluids 27, 552–566 (2008)

    Article  MATH  Google Scholar 

  28. Altmeyer S., Hoffmann Ch., Heise M., Abshagen J., Pinter A., Lucke M., Pfister G.: Wall effects on the transitions between Taylor vortices and spiral vortices. Phys. Rev. E 81, 066313 (2010)

    Article  Google Scholar 

  29. Argyris J., Faust G., Haase M.: An Exploration of Chaos. Elsevier Science B.V., Amsterdam (1994)

    MATH  Google Scholar 

  30. Wiggins S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos. 2nd edn. Springer, New York (2003)

    MATH  Google Scholar 

  31. Berge P., Pomeau Y., Vidal C.: Order within Chaos. Hermann and Wiley, Paris (1984)

    MATH  Google Scholar 

  32. Hilborn R.C.: Chaos and Nonlinear Dynamics. Oxford University Press, Oxford (2000)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nariman Ashrafi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ashrafi, N. Order in chaotic pseudoplastic flow between coaxial cylinders. Arch Appl Mech 82, 809–825 (2012). https://doi.org/10.1007/s00419-011-0594-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-011-0594-0

Keywords

Navigation