Skip to main content
Log in

Rotational and axial flow of pseudoplastic fluids

  • Published:
Mechanics of Time-Dependent Materials Aims and scope Submit manuscript

Abstract

Effects of a controllable axial flow on the stability of rotational flow of pseudoplastic fluids in the gap between concentric cylinders are studied. It is assumed that the outer cylinder is fixed while the inner one has simultaneous and independent rotational and translational motions. The fluid follows the Carreau model and mixed boundary conditions are imposed. The four-dimensional low-order dynamical system resulting from Galerkin projection of the conservation of mass and momentum equations includes highly non-linear terms in the velocity components originating from the shear-dependent viscosity. In the absence of the axial flow as the pseudoplasticity effect increases, the critical Taylor number at which the rotational flow loses its stability to the vortex structure decreases. The emergence of the vortices corresponds to the onset of a supercritical bifurcation which is also seen in the flow of a Newtonian fluid in rotation. The existence of an axial flow, induced by the translational motion of the inner cylinder, appears to further advance the emergence of the vortex flow. Complete flow analysis together with viscosity maps are given for the entire flow field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2a
Fig. 2b
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Andereck, C.D., Liu, S.S., Swinney, H.L.: Flow regimes in the circular Couette system with independently rotating cylinders. J. Fluid Mech. 164, 155–183 (1986)

    Article  Google Scholar 

  • Ashrafi, N.: Stability analysis of shear-thinning flow between rotating cylinders. Appl. Math. Model. 35, 4407–4423 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Ashrafi, N., Hazbavi, A.: Stability of non-Newtonian Taylor–Couette with axial flow. In: Proceedings of the ASME International Mechanical Engineering Congress & Exposition, November (2011)

    Google Scholar 

  • Ashrafi, N., Hazbavi, A.: Flow pattern and stability of pseudo plastic axial Taylor–Couette flow. Int. J. Non-Linear Mech. 47, 905–917 (2012)

    Article  Google Scholar 

  • Ashrafi, N., Hazbavi, A.: Heat transfer in flow of nonlinear fluids with viscous dissipation. Arch. Appl. Mech. 83, 1739–1754 (2013). https://doi.org/10.1007/s00419-013-0774-1

    Article  MATH  Google Scholar 

  • Ashrafi, N., Khayat, R.: Shear-thinning-induced chaos in Taylor–Couette flow. Phys. Rev. E 61(2), 1455–1467 (2000)

    Article  Google Scholar 

  • Ashrafi, N., Binding, D.M., Walters, K.: Cavitation effects in eccentric-cylinder flows of Newtonian and non-Newtonian fluids. Chem. Eng. Sci. 56, 5565–5574 (2001)

    Article  Google Scholar 

  • Baumert, B.M., Muller, S.J.: Flow visualization of the elastic Taylor–Couette flow in Boger fluids. Rheol. Acta 34, 147 (1995)

    Article  Google Scholar 

  • Berger, H.R.: Mode analysis of Taylor–Couette flow in finite gaps. Z. Angew. Math. Mech. 79(2), 91–96 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Bird, R.B., Curtiss, C.F., Armstrong, R.C., Hassager, O.: Dynamics of Polymeric Liquids, vol. 1, 2nd edn. Wiley, New York (1987)

    Google Scholar 

  • Chandrasekhar, S.: The hydrodynamic stability of viscous flow between coaxial cylinders. Proc. Natl. Acad. Sci. USA 46, 141–143 (1960)

    Article  MATH  Google Scholar 

  • Cornish, J.A.: Flow of water through fine clearances with relative motion of the boundaries. Proc. R. Soc. Lond. A 140, 227–240 (1933)

    Article  Google Scholar 

  • Coronado-Matutti, O., Souza Mendes, P.R., Carvalho, M.S.: Instability of inelastic shear-thinning liquids in a Couette flow between concentric cylinders. J. Fluids Eng. 126, 385–390 (2004)

    Article  Google Scholar 

  • Criminale, W.O., Jackson, T.L., Joslin, R.D.: Theory and Computation in Hydrodynamic Stability. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  • Crumeyrolle, O., Mutabazi, I.: Experimental study of inertioelastic Couette–Taylor instability modes in dilute and semidilute polymer solutions. Phys. Fluids 14(5), 1681–1688 (2002)

    Article  MATH  Google Scholar 

  • Drazin, P.G., Reid, W.H.: Hydrodynamic Stability. Cambridge University Press, Cambridge (1981)

    MATH  Google Scholar 

  • Dusting, J., Balbani, S.: Mixing in a Taylor–Couette reactor in the non-wavy regime. Chem. Eng. Sci. 64, 3103–3111 (2009)

    Article  Google Scholar 

  • Escudier, M.P., Gouldson, I.W., Jonset, D.M.: Taylor vortices in Newtonian and shear-thinning liquids. Proc. R. Soc. Lond. A 449, 155–176 (1995)

    Article  MATH  Google Scholar 

  • Hoffmann, C., Altmeyer, S., Pinter, A., Lucke, M.: Transitions between Taylor vortices and spirals via wavy Taylor vortices and wavy spirals. New J. Phys. 11, 1 (2009)

    Google Scholar 

  • Hwang, J., Yang, K.: Numerical study of Taylor–Couette flow with an axial flow. Comput. Fluids 33, 97–118 (2004)

    Article  MATH  Google Scholar 

  • Kassab, S.Z., Ismail, A.S., Elessawi, M.M.: Drilling fluid rheology and hydraulics for oil fields. Eur. J. Sci. Res. 57(1), 68–86 (2011). ISSN 1450-216X

    Google Scholar 

  • Khayat, R., Ashrafi, N.: A low-dimensional approach to nonlinear plane-Poiseuille flow of viscoelastic fluids. Phys. Fluids 14(5), 1757–1767 (2002)

    Article  MATH  Google Scholar 

  • Khellaf, K., Lauriat, G.: Numerical study of heat transfer in a non-Newtonian Carreau-fluid between rotating concentric vertical cylinders. J. Non-Newton. Fluid Mech. 89, 45–61 (2000)

    Article  MATH  Google Scholar 

  • Kuhlmann, H.: Model for Taylor Couette flow. Phys. Rev. A 32(3), 1703–1707 (1985)

    Article  Google Scholar 

  • Kuhlmann, H., Roth, D., Lucke, M.: Taylor flow and harmonic modulation of the driving force. Phys. Rev. A, At. Mol. Opt. Phys. 39, 745 (1988)

    Article  Google Scholar 

  • Larson, R.G.: Instabilities in viscoelastic flows. Rheol. Acta 31, 213 (1992)

    Article  Google Scholar 

  • Larson, R.G., Shaqfeh, E.S.G., Muller, S.J.: A purely elastic instability in Taylor–Couette flow. J. Fluid Mech. 218, 573 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  • Li, Z., Khayat, R.: A non-linear dynamical system approach to finite amplitude Taylor-Vortex flow of shear-thinning fluids. Int. J. Numer. Methods Fluids 45, 321–340 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Lorenz, E.N.: Deterministic nonperiodic flows. J. Atmos. Sci. 20, 130 (1963)

    Article  MATH  Google Scholar 

  • Nemri, M., Charton, S., Climent, E.: Mixing and axial dispersion in Taylor–Couette flows: the effect of the flow regime. Chem. Eng. Sci. 139, 109–124 (2016)

    Article  Google Scholar 

  • Pascal, J.P., Rasmussen, H.: Stability of power law fluid flow between rotating cylinders. Dyn. Syst. 10, 65–93 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  • Pinter, A., Lucke, M., Hoffmann, Ch.: Spiral and Taylor vortex fronts and pulses in axial through flow. Phys. Rev. E, Stat. Nonlinear Soft Matter Phys. 67, 026318 (2003)

    Article  MathSciNet  Google Scholar 

  • Pirro, D., Quadrio, M.: Direct numerical simulation of turbulent Taylor–Couette flow. Eur. J. Mech. B, Fluids 27, 552–566 (2008)

    Article  MATH  Google Scholar 

  • Recktenwald, A., Lucke, M., Muller, H.W.: Taylor vortex formation in axial through-flow: linear and weakly nonlinear analysis. Phys. Rev. E, Stat. Nonlinear Soft Matter Phys. 48, 4444 (1993)

    Article  Google Scholar 

  • Sinevic, V., Kuboi, R., Nienow, A.W.: Power numbers, Taylor numbers and Taylor vortices in viscous Newtonian and non-Newtonian fluids. Chem. Eng. Sci. 41(11), 2915–2923 (1986)

    Article  Google Scholar 

  • Sparrow, C.: The Lorenz Equations. Springer, New York (1983)

    Google Scholar 

  • Taylor, G.I.: Stability of a viscous liquid contained between two rotating cylinders. Philos. Trans. R. Soc. Lond. A 223, 289–343 (1923)

    Article  MATH  Google Scholar 

  • Thomas, R.H., Walters, K.: The stability of elastico-viscous flow between rotating cylinders. Part 1. J. Fluid Mech. 18, 33 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  • Veronis, G.: Motions at subcritical values of the Rayleigh number in a rotating fluid. J. Fluid Mech. 24, 545–554 (1966)

    Article  MathSciNet  Google Scholar 

  • Wu, Y.-H., Liu, K.-F.: Start-up flow of a Bingham fluid between two coaxial cylinders under a constant wall shear stress. J. Non-Newton. Fluid Mech. 223, 116–121 (2015)

    Article  MathSciNet  Google Scholar 

  • Yahata, H.: Temporal development of the Taylor vortices in a rotating field. Prog. Theor. Phys. 59, 1755 (1978)

    Article  Google Scholar 

  • Yorke, J.A., Yorke, E.D.: In: Swinney, H.L., Gollub, J.P. (eds.) Hydrodynamic Instabilities and the Transition to Turbulence. Springer, Berlin (1981)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nariman Ashrafi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The constants in Eqs. (11a)–(11d) are given in this appendix:

$$\begin{aligned} & A_{1} = A_{5} = A_{6} = B_{1} =-1,\qquad A_{2} = k^{2} \tau ^{2}, \qquad A_{3} = \frac{16k^{2} \tau ^{2}}{3 \pi ^{2}}, \qquad A _{4} = A_{8} =1 \\ & A_{7} =-\frac{32\sqrt{2}}{9} \frac{k\tau }{\pi^{3}}, \qquad A_{9} =-4 \pi ^{2} \tau , \qquad A_{10} =- \pi^{2} \tau , \qquad A_{11} = \frac{\sqrt{2} k\tau }{\pi } \\ & B_{2} =- \frac{32k\pi \tau ^{3}}{3 \sqrt{2}}, \qquad B_{3} =- \frac{k^{4}\tau ^{2}}{4} -\frac{5 k^{2} \pi ^{2} \tau ^{2}}{2} - \frac{\pi ^{4} \tau^{2}}{4} \\ & B_{4} =- \frac{64 \sqrt{2} k^{5} \tau ^{3}}{9 \pi ^{3}} + \frac{32 \sqrt{2} k^{3} \tau ^{3}}{3\pi } - \frac{32 \sqrt{2} k \pi \tau }{9} \\ & B_{5} = \frac{\tau }{8} \biggl( \frac{-9 k^{6}}{\pi ^{2}} +13 k^{4} -43 k ^{2} \pi ^{2} - \pi ^{4} \biggr), \qquad B_{6} = \frac{256k\pi \tau ^{3}}{3 \sqrt{2}} \\ & B_{7} =2 k^{6} \tau ^{3} -10 k^{4} \tau ^{3} \pi ^{2} -10 k^{2} \tau ^{3} \pi ^{4} +2 \tau ^{3} \pi ^{6}, \qquad B_{8} =-\frac{512}{15 \sqrt{2}} \tau ^{2} k\pi \\ & B_{9} =-2k^{4} \tau ^{2} -4 k^{2} \tau ^{2} \pi ^{2} -2 \tau ^{2} \pi ^{4}, \qquad B_{10} =-k^{2} \tau -3\tau \pi ^{2} \\ & B_{11} =-\biggl(\frac{k ^{2} \tau }{4} + \frac{9\tau \pi ^{2}}{4} \biggr),\qquad B_{12} =- \frac{1}{16} \biggl( \frac{18 k^{4} \tau }{\pi ^{2}} +4\tau k^{2} +18 \tau \pi ^{2} \biggr) \\ & B_{13} =-2\tau\bigl( k^{2} -3 \pi ^{2} \bigr), \qquad B_{14} =-2\tau k^{2} -6\tau \pi ^{2}, \qquad B_{15} =38 \pi^{2} \\ & B_{16} = \frac{k^{2} \tau }{\pi } -3\pi \tau , \qquad B_{17} =B_{20} =-12 \pi ^{2} \tau , \qquad B_{18} =-6 \pi^{2} \tau \\ & B_{19} =-2k\tau -6 \pi ^{2} \tau,\qquad B_{21} =-3 \pi ^{2} \tau ,\qquad B_{22} =- \frac{3}{4} \pi ^{2} \tau \\ & B_{23} =- \frac{\tau }{4} \bigl( k^{2} +9 \pi^{2} \bigr), \qquad B_{24} =-6\tau \pi , \qquad B_{25} =-6\tau\pi ^{2}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yektapour, M., Ashrafi, N. Rotational and axial flow of pseudoplastic fluids. Mech Time-Depend Mater 23, 173–192 (2019). https://doi.org/10.1007/s11043-019-09409-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11043-019-09409-0

Keywords

Navigation