Skip to main content
Log in

Theory of thin thermoelastic rods made of porous materials

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

In this paper, we consider thin rods modeled by the direct approach, in which the rod-like body is regarded as a one-dimensional continuum (i.e., a deformable curve) with a triad of rigidly rotating orthonormal vectors attached to each material point. In this context, we present a model for porous thermoelastic curved rods, having natural twisting and arbitrary shape of cross-section. To describe the porosity, we employ the theory of elastic materials with voids. The basic laws of thermodynamics are applied directly to the one-dimensional continuum, and the nonlinear governing equations are established. We formulate the constitutive equations and determine the structure of constitutive tensors. We prove the uniqueness of solution to the boundary-initial-value problem associated with the deformation of porous thermoelastic rods in the framework of linear theory. Then, we show the decoupling of the bending-shear and extension-torsion problems for straight porous rods. Using a comparison with three-dimensional equations, we identify and give interpretations to the relevant fields introduced in the direct approach. Finally, we consider the case of orthotropic materials and determine the constitutive coefficients for deformable curves in terms of three-dimensional constitutive constants by means of comparison between simple solutions obtained in the two approaches for porous thermoelastic rods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Svetlitsky V.A.: Statics of Rods. Springer, Berlin (2000)

    MATH  Google Scholar 

  2. Hodges D.H.: Nonlinear Composite Beam Theory. Amer. Inst. Aeron. Astron. Inc., Reston (2006)

    Google Scholar 

  3. Trabucho L., Viaño J.M.: Mathematical modelling of rods. In: Ciarlet, P.G., Lions, J.L. (eds) Handbook of Numerical Analysis, vol. 4, pp. 487–974. North Holland, Amsterdam (1996)

    Google Scholar 

  4. Tiba D., Vodak R.: A general asymptotic model for Lipschitzian curved rods. Adv. Math. Sci. Appl. 15, 137–198 (2005)

    MathSciNet  MATH  Google Scholar 

  5. Freddi L., Morassi A., Paroni R.: Thin-walled beams: a derivation of Vlassov theory via Γ–convergence. J. Elast. 86, 263–296 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Meunier N.: Recursive derivation of one-dimensional models from three-dimensional nonlinear elasticity. Math. Mech. Solids 13, 172–194 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cosserat E., Cosserat F.: Théorie des corps déformables. A. Herman et Fils, Paris (1909)

    Google Scholar 

  8. Green A.E., Naghdi P.M.: On thermal effects in the theory of rods. Int. J. Solids Struct. 15, 829–853 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  9. Antman S.S.: Nonlinear Problems of Elasticity. Springer, New York (1995)

    MATH  Google Scholar 

  10. Rubin M.B.: Cosserat Theories: Shells, Rods, and Points. Kluwer, Dordrecht (2000)

    MATH  Google Scholar 

  11. Zhilin P.A.: Mechanics of deformable directed surfaces. Int. J. Solids Struct. 12, 635–648 (1976)

    Article  MathSciNet  Google Scholar 

  12. Altenbach H., Naumenko K., Zhilin P.A.: A direct approach to the formulation of constitutive equations for rods and shells. In: Pietraszkiewicz, W., Szymczak, C. (eds) Shell Structures: Theory and Applications., pp. 87–90. Taylor and Francis, London (2006)

    Google Scholar 

  13. Zhilin P.A.: Nonlinear theory of thin rods. In: Indeitsev, D.A., Ivanova, E.A., Krivtsov, A.M. (eds) Advanced Problems in Mechanics, vol. 2, pp. 227–249. Instit. Problems Mech. Eng. R.A.S. Publ., St. Petersburg (2006)

    Google Scholar 

  14. Zhilin P.A.: Applied Mechanics—Theory of Thin Elastic Rods (in Russian). Politekhn. Univ. Publ., St. Petersburg (2007)

    Google Scholar 

  15. Altenbach H., Zhilin P.A.: A general theory of elastic simple shells (in Russian). Uspekhi Mekhaniki 11, 107–148 (1988)

    MathSciNet  Google Scholar 

  16. Altenbach H.: An alternative determination of transverse shear stiffnesses for sandwich and laminated plates. Int. J. Solids Struct. 37, 3503–3520 (2000)

    Article  MATH  Google Scholar 

  17. Altenbach H., Eremeyev V.A.: Direct approach-based analysis of plates composed of functionally graded materials. Arch. Appl. Mech. 78, 775–794 (2008)

    Article  MATH  Google Scholar 

  18. Altenbach H., Eremeyev V.A.: On the bending of viscoelastic plates made of polymer foams. Acta Mech. 204, 137–154 (2009)

    Article  MATH  Google Scholar 

  19. Nunziato J.W., Cowin S.C.: A nonlinear theory of elastic materials with voids. Arch. Ration. Mech. Anal. 72, 175–201 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  20. Cowin S.C., Nunziato J.W.: Linear elastic materials with voids. J. Elast. 13, 125–147 (1983)

    Article  MATH  Google Scholar 

  21. Capriz G., Podio-Guidugli P.: Materials with spherical structure. Arch. Ration. Mech. Anal. 75, 269–279 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  22. Capriz G.: Continua with Microstructure. Springer, New York (1989)

    MATH  Google Scholar 

  23. Ieşan D.: A theory of thermoelastic materials with voids. Acta Mech. 60, 67–89 (1986)

    Article  Google Scholar 

  24. Bîrsan M.: A bending theory of porous thermoelastic plates. J. Therm. Stress. 26, 67–90 (2003)

    Article  Google Scholar 

  25. Ciarletta M., Chiriţă S.: On some growth-decay results in thermoelasticity of porous media. J. Therm. Stress. {\bf 29cedil;, 905–924 (2006)

    Article  Google Scholar 

  26. Bîrsan M.: On a thermodynamic theory of porous Cosserat elastic shells. J. Therm. Stress. 29, 879–899 (2006)

    Article  Google Scholar 

  27. White J.E.: Biot-Gardner theory of extensional waves in porous rods. Geophysics 51, 742–745 (1986)

    Article  Google Scholar 

  28. Bychkov A.A., Karpinskii D.N.: Analysis of the conditions of necking in a porous rod subjected to tension. Strength Mater. 30, 274–281 (1998)

    Article  Google Scholar 

  29. Moakher M., Maddocks J.H.: A double-strand elastic rod theory. Arch. Ration. Mech. Anal. 177, 53–91 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  30. Zhilin P.A.: Applied Mechanics—Foundations of Shell Theory (in Russian). Politekhn. Univ. Publ., St. Petersburg (2006)

    Google Scholar 

  31. Lurie A.I.: Theory of Elasticity. Springer, Berlin (2005)

    Book  Google Scholar 

  32. Altenbach J., Altenbach H.: Einführung in die Kontinuumsmechanik. Teubner, Stuttgart (1994)

    Google Scholar 

  33. Goodman M.A., Cowin S.C.: A continuum theory for granular materials. Arch. Ration. Mech. Anal. 44, 249–266 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  34. Mindlin R.D.: Microstructure in linear elasticity. Arch. Ration. Mech. Anal. 16, 51–78 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  35. Toupin R.A.: Theories of elasticity with couple stress. Arch. Ration. Mech. Anal. 17, 85–112 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  36. Jenkins J.T.: Static equilibrium of granular materials. J. Appl. Mech. 42, 603–606 (1975)

    Article  Google Scholar 

  37. Cowin S.C., Goodman M.A.: A variational principle for granular materials. ZAMM 56, 281–286 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  38. Cowin S.C., Leslie F.M.: On kinetic energy and momenta in Cosserat continua. ZAMP 31, 247–260 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  39. Bîrsan, M., Altenbach H.: On the theory of porous elastic rods. Int. J. Solids Struct. (2010, in press). doi:10.1016/j.ijsolstr.2010.11.022

  40. Carlson D.E.: Linear thermoelasticity. In: Flügge, W. (eds) Handbuch der Physik, vol. VI a/2, pp. 297–346. Springer, Berlin (1972)

    Google Scholar 

  41. Ieşan D.: Thermal effects in orthotropic porous elastic beams. Z. Angew. Math. Phys. (ZAMP) 60, 138–153 (2009)

    Article  MATH  Google Scholar 

  42. Ieşan D.: Classical and Generalized Models of Elastic Rods. Chapman & Hall/CRC Press, Boca Raton, London (2009)

    MATH  Google Scholar 

  43. Ieşan D., Scalia A.: On the deformation of functionally graded porous elastic cylinders. J. Elast. 87, 147–159 (2007)

    Article  MATH  Google Scholar 

  44. Puri P., Cowin S.C.: Plane waves in linear elastic materials with voids. J. Elast. 15, 167–183 (1985)

    Article  MATH  Google Scholar 

  45. Gradshteyn I.S., Ryzhik I.M.: Tables of Integrals, Series, and Products, 6th edn. Academic Press, San Diego (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mircea Bîrsan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bîrsan, M., Altenbach, H. Theory of thin thermoelastic rods made of porous materials. Arch Appl Mech 81, 1365–1391 (2011). https://doi.org/10.1007/s00419-010-0490-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-010-0490-z

Keywords

Navigation