Alroy J, Merk FB, Morré DJ, Weinstein RS (1982) Membrane differentiation in the Golgi apparatus of mammalian urinary bladder epithelium. Anat Rec 203(4):429–440. https://doi.org/10.1002/ar.1092030402
CAS
Article
PubMed
Google Scholar
Antanavičiūtė I, Rysevaitė K, Liutkevičius V, Marandykina A, Rimkutė L, Sveikatienė R, Uloza V, Skeberdis VA (2014) Long-distance communication between laryngeal carcinoma cells. PLoS One 9(6):e99196. https://doi.org/10.1371/journal.pone.0099196
CAS
Article
PubMed
PubMed Central
Google Scholar
Araki I, Du S, Kobayashi H, Sawada N, Mochizuki T, Zakoji H, Takeda M (2008) Roles of mechanosensitive ion channels in bladder sensory transduction and overactive bladder. Int J Urol 15(8):681–687. https://doi.org/10.1111/j.1442-2042.2008.02052.x
Article
PubMed
Google Scholar
Beznoussenko GV, Kweon HS, Sesorova IS, Mironov AA (2022) Comparison of the cisterna maturation-progression model with the kiss-and-run model of intra-Golgi transport: role of cisternal pores and cargo domains. Int J Mol Sci. https://doi.org/10.3390/ijms23073590
Article
PubMed
PubMed Central
Google Scholar
Birder L, Andersson KE (2013) Urothelial signaling. Physiol Rev 93(2):653–680. https://doi.org/10.1152/physrev.00030.2012
CAS
Article
PubMed
PubMed Central
Google Scholar
Cavieres VA, Cerda-Troncoso C, Rivera-Dictter A, Castro RI, Luchsinger C, Santibañez N, Burgos PV, Mardones GA (2020) Human Golgi phosphoprotein 3 is an effector of RAB1A and RAB1B. PLoS One 15(8):e0237514. https://doi.org/10.1371/journal.pone.0237514
CAS
Article
PubMed
PubMed Central
Google Scholar
Dalghi MG, Montalbetti N, Carattino MD, Apodaca G (2020) The urothelium: life in a liquid environment. Physiol Rev 100(4):1621–1705. https://doi.org/10.1152/physrev.00041.2019
CAS
Article
PubMed
PubMed Central
Google Scholar
Dalghi MG, Ruiz WG, Clayton DR, Montalbetti N, Daugherty SL, Beckel JM, Carattino MD, Apodaca G (2021) Functional roles for PIEZO1 and PIEZO2 in urothelial mechanotransduction and lower urinary tract interoception. JCI Insight. https://doi.org/10.1172/jci.insight.152984
Article
PubMed
PubMed Central
Google Scholar
Desalle R, Chicote JU, Sun TT, Garcia-España A (2014) Generation of divergent uroplakin tetraspanins and their partners during vertebrate evolution: identification of novel uroplakins. BMC Evol Biol 14:13. https://doi.org/10.1186/1471-2148-14-13
CAS
Article
PubMed
PubMed Central
Google Scholar
Dubey GP, Ben-Yehuda S (2011) Intercellular nanotubes mediate bacterial communication. Cell 144(4):590–600. https://doi.org/10.1016/j.cell.2011.01.015
CAS
Article
PubMed
Google Scholar
Dubois F, Galas L, Elie N, Le Foll F, Bazille C, Bergot E, Levallet G (2021) Centrosome, the newly identified passenger through tunneling nanotubes, increases binucleation and proliferation marker in receiving cells. Int J Mol Sci 22:9680. https://doi.org/10.3390/ijms22189680
CAS
Article
PubMed
PubMed Central
Google Scholar
Garcia-Espana A, Chung PJ, Zhao X, Lee A, Pellicer A, Yu J, Sun TT, Desalle R (2006) Origin of the tetraspanin uroplakins and their co-evolution with associated proteins: implications for uroplakin structure and function. Mol Phylogenet Evol 41(2):355–367. https://doi.org/10.1016/j.ympev.2006.04.023
CAS
Article
PubMed
Google Scholar
Gevaert T, Vriens J, Segal A, Everaerts W, Roskams T, Talavera K, Owsianik G, Liedtke W, Daelemans D, Dewachter I, Van Leuven F, Voets T, De Ridder D, Nilius B (2007) Deletion of the transient receptor potential cation channel TRPV4 impairs murine bladder voiding. J Clin Invest 117(11):3453–3462. https://doi.org/10.1172/jci31766
CAS
Article
PubMed
PubMed Central
Google Scholar
Grasso EJ, Calderón RO (2009) Urinary bladder membrane permeability differentially induced by membrane lipid composition. Mol Cell Biochem 330(1–2):163–169. https://doi.org/10.1007/s11010-009-0129-y
CAS
Article
PubMed
Google Scholar
Hicks RM (1966) The function of the Golgi complex in transitional epithelium synthesis of the thick cell membrane. J Cell Biol 30(3):623–643. https://doi.org/10.1083/jcb.30.3.623
CAS
Article
PubMed
PubMed Central
Google Scholar
Hicks RM (1975) The mammalian urinary bladder: an accommodating organ. Biol Rev Camb Philos Soc 50(2):215–246
CAS
Article
Google Scholar
Hu P, Deng FM, Liang FX, Hu CM, Auerbach AB, Shapiro E, Wu XR, Kachar B, Sun TT (2000) Ablation of uroplakin III gene results in small urothelial plaques, urothelial leakage, and vesicoureteral reflux. J Cell Biol 151(5):961–972
CAS
Article
Google Scholar
Hu P, Meyers S, Liang FX, Deng FM, Kachar B, Zeidel ML, Sun TT (2002) Role of membrane proteins in permeability barrier function: uroplakin ablation elevates urothelial permeability. Am J Physiol Renal Physiol 283(6):F1200-1207. https://doi.org/10.1152/ajprenal.00043.2002
CAS
Article
PubMed
Google Scholar
Hu CC, Bachmann T, Zhou G, Liang FX, Ghiso J, Kreibich G, Sun TT (2008) Assembly of a membrane receptor complex: roles of the uroplakin II prosequence in regulating uroplakin bacterial receptor oligomerization. Biochem J 414(2):195–203. https://doi.org/10.1042/bj20080550
CAS
Article
PubMed
Google Scholar
Hudoklin S, Zupancic D, Romih R (2009) Maturation of the Golgi apparatus in urothelial cells. Cell Tissue Res 336(3):453–463. https://doi.org/10.1007/s00441-009-0779-9
CAS
Article
PubMed
Google Scholar
Hudoklin S, Jezernik K, Neumüller J, Pavelka M, Romih R (2011) Urothelial plaque formation in post-Golgi compartments. PLoS One 6(8):e23636. https://doi.org/10.1371/journal.pone.0023636
CAS
Article
PubMed
PubMed Central
Google Scholar
Hudoklin S, Jezernik K, Neumüller J, Pavelka M, Romih R (2012) Electron tomography of fusiform vesicles and their organization in urothelial cells. PLoS One 7(3):e32935. https://doi.org/10.1371/journal.pone.0032935
CAS
Article
PubMed
PubMed Central
Google Scholar
Jerman UD, Veranič P, Kreft ME (2014) Amniotic membrane scaffolds enable the development of tissue-engineered urothelium with molecular and ultrastructural properties comparable to that of native urothelium. Tissue Eng Part C Methods 20(4):317–327. https://doi.org/10.1089/ten.TEC.2013.0298
CAS
Article
PubMed
Google Scholar
Jerman UD, Višnjar T, Bratkovič IH, Resnik N, Pavlin M, Veranič P, Kreft ME (2021) Attachment of cancer urothelial cells to the bladder epithelium occurs on uroplakin-negative cells and is mediated by desmosomal and not by classical cadherins. Int J Mol Sci. https://doi.org/10.3390/ijms22115565
Article
PubMed
PubMed Central
Google Scholar
Jimenez A, Chen D, Alto NM (2016) How Bacteria subvert animal cell structure and function. Annu Rev Cell Dev Biol 32:373–397. https://doi.org/10.1146/annurev-cellbio-100814-125227
CAS
Article
PubMed
PubMed Central
Google Scholar
Joshi G, Chi Y, Huang Z, Wang Y (2014) Aβ-induced Golgi fragmentation in Alzheimer’s disease enhances Aβ production. Proc Natl Acad Sci USA 111(13):E1230-1239. https://doi.org/10.1073/pnas.1320192111
CAS
Article
PubMed
PubMed Central
Google Scholar
Joshi G, Bekier ME 2nd, Wang Y (2015) Golgi fragmentation in Alzheimer’s disease. Front Neurosci 9:340. https://doi.org/10.3389/fnins.2015.00340
Article
PubMed
PubMed Central
Google Scholar
Jost SP, Gosling JA, Dixon JS (1989) The morphology of normal human bladder urothelium. J Anat 167:103–115
CAS
PubMed
PubMed Central
Google Scholar
Kachar B, Liang F, Lins U, Ding M, Wu XR, Stoffler D, Aebi U, Sun TT (1999) Three-dimensional analysis of the 16 nm urothelial plaque particle: luminal surface exposure, preferential head-to-head interaction, and hinge formation. J Mol Biol 285(2):595–608. https://doi.org/10.1006/jmbi.1998.2304
CAS
Article
PubMed
Google Scholar
Khandelwal P, Abraham SN, Apodaca G (2009) Cell biology and physiology of the uroepithelium. Am J Physiol Renal Physiol 297(6):F1477-1501. https://doi.org/10.1152/ajprenal.00327.2009
CAS
Article
PubMed
PubMed Central
Google Scholar
Koss LG (1969) The asymmetric unit membranes of the epithelium of the urinary bladder of the rat an electron microscopic study of a mechanism of epithelial maturation and function. Lab Invest 21(2):154–168
CAS
PubMed
Google Scholar
Kreft ME, Robenek H (2012) Freeze-fracture replica immunolabelling reveals urothelial plaques in cultured urothelial cells. PLoS One 7(6):e38509. https://doi.org/10.1371/journal.pone.0038509
CAS
Article
PubMed
PubMed Central
Google Scholar
Kreft ME, Romih R, Sterle M (2002) Antigenic and ultrastructural markers associated with urothelial cytodifferentiation in primary explant outgrowths of mouse bladder. Cell Biol Int 26(1):63–74. https://doi.org/10.1006/cbir.2001.0829
CAS
Article
PubMed
Google Scholar
Kreft ME, Sterle M, Veranic P, Jezernik K (2005) Urothelial injuries and the early wound healing response: tight junctions and urothelial cytodifferentiation. Histochem Cell Biol 123(4–5):529–539. https://doi.org/10.1007/s00418-005-0770-9
CAS
Article
PubMed
Google Scholar
Kreft M, Romih R, Kreft M, Jezernik K (2009a) Endocytotic activity of bladder superficial urothelial cells is inversely related to their differentiation stage. Differentiation 77(1):48–59. https://doi.org/10.1016/j.diff.2008.09.011
CAS
Article
PubMed
Google Scholar
Kreft ME, Jezernik K, Kreft M, Romih R (2009b) Apical plasma membrane traffic in superficial cells of bladder urothelium. Ann NY Acad Sci 1152:18–29. https://doi.org/10.1111/j.1749-6632.2008.04004.x
Article
PubMed
Google Scholar
Kreft ME, Di Giandomenico D, Beznoussenko GV, Resnik N, Mironov AA, Jezernik K (2010a) Golgi apparatus fragmentation as a mechanism responsible for uniform delivery of uroplakins to the apical plasma membrane of uroepithelial cells. Biol Cell 102(11):593–607. https://doi.org/10.1042/BC20100024
CAS
Article
PubMed
Google Scholar
Kreft ME, Hudoklin S, Jezernik K, Romih R (2010b) Formation and maintenance of blood–urine barrier in urothelium. Protoplasma 246(1–4):3–14. https://doi.org/10.1007/s00709-010-0112-1
Article
PubMed
Google Scholar
Kuna RS, Field SJ (2019) GOLPH3: a Golgi phosphatidylinositol(4)phosphate effector that directs vesicle trafficking and drives cancer. J Lipid Res 60(2):269–275. https://doi.org/10.1194/jlr.R088328
CAS
Article
PubMed
Google Scholar
Lane JD, Lucocq J, Pryde J, Barr FA, Woodman PG, Allan VJ, Lowe M (2002) Caspase-mediated cleavage of the stacking protein GRASP65 is required for Golgi fragmentation during apoptosis. J Cell Biol 156(3):495–509. https://doi.org/10.1083/jcb.200110007
CAS
Article
PubMed
PubMed Central
Google Scholar
Lasič E, Višnjar T, Kreft ME (2015) Properties of the urothelium that establish the blood–urine barrier and their implications for drug delivery. Rev Physiol Biochem Pharmacol 168:1–29. https://doi.org/10.1007/112_2015_22
CAS
Article
PubMed
Google Scholar
Lavi E, Wang Q, Weiss SR, Gonatas NK (1996) Syncytia formation induced by coronavirus infection is associated with fragmentation and rearrangement of the Golgi apparatus. Virology 221(2):325–334. https://doi.org/10.1006/viro.1996.0382
CAS
Article
PubMed
Google Scholar
Lewis SA, Diamond JM (1976) Na+ transport by rabbit urinary bladder, a tight epithelium. J Membr Biol 28(1):1–40
CAS
Article
Google Scholar
Liang FX, Riedel I, Deng FM, Zhou G, Xu C, Wu XR, Kong XP, Moll R, Sun TT (2001) Organization of uroplakin subunits: transmembrane topology, pair formation and plaque composition. Biochem J 355(Pt 1):13–18
CAS
Article
Google Scholar
Liao Y, Chang HC, Liang FX, Chung PJ, Wei Y, Nguyen TP, Zhou G, Talebian S, Krey LC, Deng FM, Wong TW, Chicote JU, Grifo JA, Keefe DL, Shapiro E, Lepor H, Wu XR, DeSalle R, Garcia-España A, Kim SY, Sun TT (2018) Uroplakins play conserved roles in egg fertilization and acquired additional urothelial functions during mammalian divergence. Mol Biol Cell 29(26):3128–3143. https://doi.org/10.1091/mbc.E18-08-0496
CAS
Article
PubMed
PubMed Central
Google Scholar
Lobban ED, Smith BA, Hall GD, Harnden P, Roberts P, Selby PJ, Trejdosiewicz LK, Southgate J (1998) Uroplakin gene expression by normal and neoplastic human urothelium. Am J Clin Pathol 153(6):1957–1967. https://doi.org/10.1016/s0002-9440(10)65709-4
CAS
Article
Google Scholar
Luini A, Mironov AA, Polishchuk EV, Polishchuk RS (2008) Morphogenesis of post-Golgi transport carriers. Histochem Cell Biol 129(2):153–161. https://doi.org/10.1007/s00418-007-0365-8
CAS
Article
PubMed
PubMed Central
Google Scholar
Machamer CE (2015) The Golgi complex in stress and death. Front Neurosci 9:421. https://doi.org/10.3389/fnins.2015.00421
Article
PubMed
PubMed Central
Google Scholar
Malagolini N, Cavallone D, Wu XR, Serafini-Cessi F (2000) Terminal glycosylation of bovine uroplakin III, one of the major integral-membrane glycoproteins of mammalian bladder. Biochim Biophys Acta 1475(3):231–237
CAS
Article
Google Scholar
Marshall KL, Saade D, Ghitani N, Coombs AM, Szczot M, Keller J, Ogata T, Daou I, Stowers LT, Bönnemann CG, Chesler AT, Patapoutian A (2020) PIEZO2 in sensory neurons and urothelial cells coordinates urination. Nature 588(7837):290–295. https://doi.org/10.1038/s41586-020-2830-7
CAS
Article
PubMed
PubMed Central
Google Scholar
Melicow MM (1978) The urothelium: a battleground for oncogenesis. J Urol 120(1):43–47. https://doi.org/10.1016/s0022-5347(17)57034-2
CAS
Article
PubMed
Google Scholar
Min G, Zhou G, Schapira M, Sun TT, Kong XP (2003) Structural basis of urothelial permeability barrier function as revealed by Cryo-EM studies of the 16 nm uroplakin particle. J Cell Sci 116(Pt 20):4087–4094. https://doi.org/10.1242/jcs.00811
CAS
Article
PubMed
Google Scholar
Mironov AA, Beznoussenko GV (2011) Molecular mechanisms responsible for formation of Golgi ribbon. Histol Histopathol 26(1):117–133. https://doi.org/10.14670/hh-26.117
CAS
Article
PubMed
Google Scholar
Mironov AA, Beznoussenko GV (2019) Models of intracellular transport: pros and cons. Front Cell Dev Biol 7:146. https://doi.org/10.3389/fcell.2019.00146
Article
PubMed
PubMed Central
Google Scholar
Mironov AA, Sesorova IS, Seliverstova EV, Beznoussenko GV (2017) Different Golgi ultrastructure across species and tissues: Implications under functional and pathological conditions, and an attempt at classification. Tissue Cell 49(2Pt A):186–201. https://doi.org/10.1016/j.tice.2016.12.002
CAS
Article
PubMed
Google Scholar
Mowbrey K, Dacks JB (2009) Evolution and diversity of the Golgi body. FEBS Lett 583(23):3738–3745. https://doi.org/10.1016/j.febslet.2009.10.025
CAS
Article
PubMed
Google Scholar
Núñez-Olvera SI, Chávez-Munguía B, Del Rocío Terrones-Gurrola MC, Marchat LA, Puente-Rivera J, Ruíz-García E, Campos-Parra AD, Vázquez-Calzada C, Lizárraga-Verdugo ER, Ramos-Payán R, Salinas-Vera YM, López-Camarillo C (2020) A novel protective role for microRNA-3135b in Golgi apparatus fragmentation induced by chemotherapy via GOLPH3/AKT1/mTOR axis in colorectal cancer cells. Sci Rep 10(1):10555. https://doi.org/10.1038/s41598-020-67550-0
CAS
Article
PubMed
PubMed Central
Google Scholar
Olsburgh J, Harnden P, Weeks R, Smith B, Joyce A, Hall G, Poulsom R, Selby P, Southgate J (2003) Uroplakin gene expression in normal human tissues and locally advanced bladder cancer. J Pathol 199(1):41–49. https://doi.org/10.1002/path.1252
CAS
Article
PubMed
Google Scholar
Parsons CL (2007) The role of the urinary epithelium in the pathogenesis of interstitial cystitis/prostatitis/urethritis. Urology 69(4 Suppl):9–16. https://doi.org/10.1016/j.urology.2006.03.084
Article
PubMed
Google Scholar
Petrosyan A (2015) Onco-Golgi: is fragmentation a gate to cancer progression? Biochem Mol Biol J. https://doi.org/10.21767/2471-8084.100006
Article
PubMed
PubMed Central
Google Scholar
Polishchuk EV, Di Pentima A, Luini A, Polishchuk RS (2003) Mechanism of constitutive export from the Golgi: bulk flow via the formation, protrusion, and en bloc cleavage of large trans-Golgi network tubular domains. Mol Biol Cell 14(11):4470–4485. https://doi.org/10.1091/mbc.e03-01-0033
CAS
Article
PubMed
PubMed Central
Google Scholar
Predojević L, Keše D, Žgur Bertok D, Železnik Ramuta T, Veranič P, Erdani Kreft M, Starčič Erjavec M (2022) A biomimetic porcine urothelial model for assessing Escherichia coli pathogenicity. Microorganisms. https://doi.org/10.3390/microorganisms10040783
Article
PubMed
PubMed Central
Google Scholar
Rendón WO, Martínez-Alonso E, Tomás M, Martínez-Martínez N, Martínez-Menárguez JA (2013) Golgi fragmentation is rab and SNARE dependent in cellular models of Parkinson’s disease. Histochem Cell Biol 139(5):671–684. https://doi.org/10.1007/s00418-012-1059-4
CAS
Article
PubMed
Google Scholar
Resnik N, Repnik U, Kreft ME, Sepčić K, Maček P, Turk B, Veranič P (2015) Highly selective anti-cancer activity of cholesterol-interacting agents methyl-β-cyclodextrin and ostreolysin A/pleurotolysin B protein complex on urothelial cancer cells. PLoS One 10(9):e0137878. https://doi.org/10.1371/journal.pone.0137878
CAS
Article
PubMed
PubMed Central
Google Scholar
Romih R, Veranic P, Jezernik K (1999) Actin filaments during terminal differentiation of urothelial cells in the rat urinary bladder. Histochem Cell Biol 112(5):375–380. https://doi.org/10.1007/s004180050419
CAS
Article
PubMed
Google Scholar
Romih R, Veranic P, Jezernik K (2002) Appraisal of differentiation markers in urothelial cells. Appl Immunohistochem Mol Morphol 10(4):339–343. https://doi.org/10.1097/00129039-200212000-00009
CAS
Article
PubMed
Google Scholar
Romih R, Korosec P, de Mello W Jr., Jezernik K. (2005) Differentiation of epithelial cells in the urinary tract. Cell Tissue Res 320 (2):259-268 https://doi.org/10.1007/s00441-004-1005-4
Roth J (1996) Protein glycosylation in the endoplasmic reticulum and the Golgi apparatus and cell type-specificity of cell surface glycoconjugate expression: analysis by the protein A-gold and lectin-gold techniques. Histochem Cell Biol 106(1):79–92. https://doi.org/10.1007/bf02473203
CAS
Article
PubMed
Google Scholar
Rustom A, Saffrich R, Markovic I, Walther P, Gerdes HH (2004) Nanotubular highways for intercellular organelle transport. Science 303(5660):1007–1010. https://doi.org/10.1126/science.1093133
CAS
Article
PubMed
Google Scholar
Severs NJ, Hicks RM (1979) Analysis of membrane structure in the transitional epithelium of rat urinary bladder 2 the discoidal vesicles and Golgi apparatus: their role in luminal membrane biogenesis. J Ultrastruct Res 69(2):279–296
CAS
Article
Google Scholar
Smith NJ, Hinley J, Varley CL, Eardley I, Trejdosiewicz LK, Southgate J (2015) The human urothelial tight junction: claudin 3 and the ZO-1α(+) switch. Bladder (San Franc) 2(1):e9. https://doi.org/10.14440/bladder.2015.33
Article
Google Scholar
Taskovska M, Kreft ME, Smrkolj T (2020) Current and innovative approaches in the treatment of non-muscle invasive bladder cancer: the role of transurethral resection of bladder tumor and organoids. Radiol Oncol 54(2):135–143. https://doi.org/10.2478/raon-2020-0025
Article
PubMed
PubMed Central
Google Scholar
Tomás M, Martínez-Alonso E, Martínez-Martínez N, Cara-Esteban M, Martínez-Menárguez JA (2021) Fragmentation of the Golgi complex of dopaminergic neurons in human substantia nigra: new cytopathological findings in Parkinson’s disease. Histol Histopathol 36(1):47–60. https://doi.org/10.14670/hh-18-270
CAS
Article
PubMed
Google Scholar
Tratnjek L, Romih R, Kreft ME (2017) Differentiation-dependent rearrangements of actin filaments and microtubules hinder apical endocytosis in urothelial cells. Histochem Cell Biol 148(2):143–156. https://doi.org/10.1007/s00418-017-1566-4
CAS
Article
PubMed
Google Scholar
Tu L, Sun TT, Kreibich G (2002) Specific heterodimer formation is a prerequisite for uroplakins to exit from the endoplasmic reticulum. Mol Biol Cell 13(12):4221–4230. https://doi.org/10.1091/mbc.E02-04-0211
CAS
Article
PubMed
PubMed Central
Google Scholar
Varley CL, Garthwaite MA, Cross W, Hinley J, Trejdosiewicz LK, Southgate J (2006) PPARgamma-regulated tight junction development during human urothelial cytodifferentiation. J Cell Physiol 208(2):407–417. https://doi.org/10.1002/jcp.20676
CAS
Article
PubMed
PubMed Central
Google Scholar
Veranic P, Jezernik K (2002) Trajectorial organisation of cytokeratins within the subapical region of umbrella cells. Cell Motil Cytoskelet 53(4):317–325. https://doi.org/10.1002/cm.10077
Article
Google Scholar
Veranic P, Romih R, Jezernik K (2004) What determines differentiation of urothelial umbrella cells? Eur J Cell Biol 83(1):27–34
Article
Google Scholar
Vignais ML, Caicedo A, Brondello JM, Jorgensen C (2017) Cell connections by tunneling nanotubes: effects of mitochondrial trafficking on target cell metabolism, homeostasis, and response to therapy. Stem Cells Int 2017:6917941. https://doi.org/10.1155/2017/6917941
CAS
Article
PubMed
PubMed Central
Google Scholar
Višnjar T, Kreft ME (2013) Air-liquid and liquid-liquid interfaces influence the formation of the urothelial permeability barrier in vitro. Vitro Cell Dev Biol Anim 49(3):196–204. https://doi.org/10.1007/s11626-013-9585-5
CAS
Article
Google Scholar
Višnjar T, Chesi G, Iacobacci S, Polishchuk E, Resnik N, Robenek H, Kreft M, Romih R, Polishchuk R, Kreft ME (2017) Uroplakin traffic through the Golgi apparatus induces its fragmentation: new insights from novel in vitro models. Sci Rep 7(1):12842. https://doi.org/10.1038/s41598-017-13103-x
CAS
Article
PubMed
PubMed Central
Google Scholar
Wang EC, Lee JM, Ruiz WG, Balestreire EM, von Bodungen M, Barrick S, Cockayne DA, Birder LA, Apodaca G (2005) ATP and purinergic receptor-dependent membrane traffic in bladder umbrella cells. J Clin Invest 115(9):2412–2422. https://doi.org/10.1172/jci24086
CAS
Article
PubMed
PubMed Central
Google Scholar
Wang Y, Cui J, Sun X, Zhang Y (2011) Tunneling-nanotube development in astrocytes depends on p53 activation. Cell Death Differ 18(4):732–742. https://doi.org/10.1038/cdd.2010.147
CAS
Article
PubMed
Google Scholar
Warren RC, Hicks RM (1970) Structure of the subunits in the thick luminal membrane of rat urinary bladder. Nature 227(5255):280–281. https://doi.org/10.1038/227280b0
CAS
Article
PubMed
Google Scholar
Wei JH, Seemann J (2017) Golgi ribbon disassembly during mitosis, differentiation and disease progression. Curr Opin Cell Biol 47:43–51. https://doi.org/10.1016/j.ceb.2017.03.008
CAS
Article
PubMed
PubMed Central
Google Scholar
Winder M, Tobin G, Zupančič D, Romih R (2014) Signalling molecules in the urothelium. Biomed Res Int 2014:297295. https://doi.org/10.1155/2014/297295
CAS
Article
PubMed
PubMed Central
Google Scholar
Witjes JA, Bruins HM, Cathomas R, Compérat EM, Cowan NC, Gakis G, Hernández V, Linares Espinós E, Lorch A, Neuzillet Y, Rouanne M, Thalmann GN, Veskimäe E, Ribal MJ, van der Heijden AG (2021) European association of urology guidelines on muscle-invasive and metastatic bladder cancer: summary of the 2020 guidelines. Eur Urol 79(1):82–104. https://doi.org/10.1016/j.eururo.2020.03.055
CAS
Article
PubMed
Google Scholar
Wu XR, Manabe M, Yu J, Sun TT (1990) Large scale purification and immunolocalization of bovine uroplakins I, II, and III molecular markers of urothelial differentiation. J Biol Chem 265(31):19170–19179
CAS
Article
Google Scholar
Wu XR, Lin JH, Walz T, Haner M, Yu J, Aebi U, Sun TT (1994) Mammalian uroplakins a group of highly conserved urothelial differentiation-related membrane proteins. J Biol Chem 269(18):13716–13724
CAS
Article
Google Scholar
Wu CC, Taylor RS, Lane DR, Ladinsky MS, Weisz JA, Howell KE (2000) GMx33: a novel family of trans-Golgi proteins identified by proteomics. Traffic 1(12):963–975
CAS
PubMed
Google Scholar
Xie B, Zhou G, Chan SY, Shapiro E, Kong XP, Wu XR, Sun TT, Costello CE (2006) Distinct glycan structures of uroplakins Ia and Ib: structural basis for the selective binding of FimH adhesin to uroplakin Ia. J Biol Chem 281(21):14644–14653. https://doi.org/10.1074/jbc.M600877200
CAS
Article
PubMed
Google Scholar
Yu J, Manabe M, Wu XR, Xu C, Surya B, Sun TT (1990) Uroplakin I: a 27-kD protein associated with the asymmetric unit membrane of mammalian urothelium. J Cell Biol 111(3):1207–1216
CAS
Article
Google Scholar
Yu J, Lin JH, Wu XR, Sun TT (1994) Uroplakins Ia and Ib, two major differentiation products of bladder epithelium, belong to a family of four transmembrane domain (4TM) proteins. J Cell Biol 125(1):171–182
CAS
Article
Google Scholar
Yu Y, Skočaj M, Kreft ME, Resnik N, Veranič P, Franceschi P, Sepčić K, Guella G (2016) Comparative lipidomic study of urothelial cancer models: association with urothelial cancer cell invasiveness. Mol Biosyst 12(11):3266–3279. https://doi.org/10.1039/c6mb00477f
CAS
Article
PubMed
Google Scholar
Yu T, An Q, Cao XL, Yang H, Cui J, Li ZJ, Xiao G (2020) GOLPH3 inhibition reverses oxaliplatin resistance of colon cancer cells via suppression of PI3K/AKT/mTOR pathway. Life Sci 260:118294. https://doi.org/10.1016/j.lfs.2020.118294
CAS
Article
PubMed
Google Scholar
Zhang X (2021) Alterations of Golgi structural proteins and glycosylation defects in cancer. Front Cell Dev Biol 9:665289. https://doi.org/10.3389/fcell.2021.665289
Article
PubMed
PubMed Central
Google Scholar
Zhang Q, Zhuang J, Deng Y, Zhao X, Tang B, Yao D, Zhao W, Chang C, Lu Q, Chen W, Zhang S, Ji C, Cao L, Guo H (2015) GOLPH3 is a potential therapeutic target and a prognostic indicator of poor survival in bladder cancer treated by cystectomy. Oncotarget 6(31):32177–32192. https://doi.org/10.18632/oncotarget.4867
Article
PubMed
PubMed Central
Google Scholar
Zhang K, Sun Z, Chen X, Zhang Y, Guo A, Zhang Y (2021) Intercellular transport of tau protein and β-amyloid mediated by tunneling nanotubes. Am J Transl Res 13(11):12509–12522
CAS
PubMed
PubMed Central
Google Scholar
Zupancic D, Romih R (2013) Heterogeneity of uroplakin localization in human normal urothelium, papilloma and papillary carcinoma. Radiol Oncol 47(4):338–345. https://doi.org/10.2478/raon-2013-0052
Article
PubMed
PubMed Central
Google Scholar
Zupančič D, Zakrajšek M, Zhou G, Romih R (2011) Expression and localization of four uroplakins in urothelial preneoplastic lesions. Histochem Cell Biol 136(4):491–500. https://doi.org/10.1007/s00418-011-0857-4
CAS
Article
PubMed
Google Scholar
Zupančič D, Kreft ME, Romih R (2014) Selective binding of lectins to normal and neoplastic urothelium in rat and mouse bladder carcinogenesis models. Protoplasma 251(1):49–59. https://doi.org/10.1007/s00709-013-0524-9
CAS
Article
PubMed
Google Scholar