Skip to main content

Advertisement

Log in

Retrograde migration of pectoral girdle muscle precursors depends on CXCR4/SDF-1 signaling

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

In vertebrates, muscles of the pectoral girdle connect the forelimbs with the thorax. During development, the myogenic precursor cells migrate from the somites into the limb buds. Whereas most of the myogenic precursors remain in the limb bud to form the forelimb muscles, several cells migrate back toward the trunk to give rise to the superficial pectoral girdle muscles, such as the large pectoral muscle, the latissimus dorsi and the deltoid. Recently, this developing mode has been referred to as the “In–Out” mechanism. The present study focuses on the mechanisms of the “In–Out” migration during formation of the pectoral girdle muscles. Combining in ovo electroporation, tissue slice-cultures and confocal laser scanning microscopy, we visualize live in detail the retrograde migration of myogenic precursors from the forelimb bud into the trunk region by live imaging. Furthermore, we present for the first time evidence for the involvement of the chemokine receptor CXCR4 and its ligand SDF-1 during these processes. After microsurgical implantations of CXCR4 inhibitor beads in the proximal forelimb region of chicken embryos, we demonstrate with the aid of in situ hybridization and live-cell imaging that CXCR4/SDF-1 signaling is crucial for the retrograde migration of pectoral girdle muscle precursors. Moreover, we analyzed the MyoD expression in CXCR4-mutant mouse embryos and observed a considerable decrease in pectoral girdle musculature. We thus demonstrate the importance of the CXCR4/SDF-1 axis for the pectoral girdle muscle formation in avians and mammals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Baban A, Torre M, Bianca S, Buluggiu A, Rossello MI, Calevo MG, Valle M, Ravazzolo R, Jasonni V, Lerone M (2009) Poland syndrome with bilateral features: case description with review of the literature. Am J Med Genet A 149A(7):1597–1602

    Article  PubMed  Google Scholar 

  • Balkwill F (2004) The significance of cancer cell expression of the chemokine receptor CXCR4. Semin Cancer Biol 14(3):171–179

    Article  PubMed  CAS  Google Scholar 

  • Bavinck JN, Weaver DD (1986) Subclavian artery supply disruption sequence: hypothesis of a vascular etiology for Poland, Klippel-Feil, and Möbius anomalies. Am J Med Genet 23(4):903–918

    Article  PubMed  CAS  Google Scholar 

  • Ben-Yair R, Kalcheim C (2005) Lineage analysis of the avian dermomyotome sheet reveals the existence of single cells with both dermal and muscle progenitor fates. Development 132(4):689–701

    Article  PubMed  CAS  Google Scholar 

  • Ben-Yair R, Kalcheim C (2008) Notch and bone morphogenetic protein differentially act on dermomyotome cells to generate endothelium, smooth, and striated muscle. J Cell Biol 180(3):607–618

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ben-Yair R, Kahane N, Kalcheim C (2003) Coherent development of dermomyotome and dermis from the entire mediolateral extent of the dorsal somite. Development 130(18):4325–4336

    Article  PubMed  CAS  Google Scholar 

  • Beresford B (1983) Brachial muscles in the chick embryo: the fate of individual somites. J Embryol Exp Morphol 77:99–116

    PubMed  CAS  Google Scholar 

  • Beresford B, Le Lievre C, Rathbone MP (1978) Chimaera studies of the origin and formation of the pectoral musculature of the avian embryo. J Exp Zool 205(2):321–326

    Article  PubMed  CAS  Google Scholar 

  • Bergman RA, Thompson SA, Saadeh FA (1988) Anomalous fascicle and high origin of latissimus dorsi compensating for absence of serratus anterior. Anat Anz 167(2):161–164

    PubMed  CAS  Google Scholar 

  • Bladt F, Riethmacher D, Isenmann S, Aguzzi A, Birchmeier C (1995) Essential role for the c-met receptor in the migration of myogenic precursor cells into the limb bud. Nature 376(6543):768–771

    Article  PubMed  CAS  Google Scholar 

  • Bleul CC, Fuhlbrigge RC, Casasnovas JM, Aiuti A, Springer TA (1996) A highly efficacious lymphocyte chemoattractant, stromal cell-derived factor 1 (SDF-1). J Exp Med 184(3):1101–1109

    Article  PubMed  CAS  Google Scholar 

  • Bober E, Franz T, Arnold HH, Gruss P, Tremblay P (1994) Pax-3 is required for the development of limb muscles: a possible role for the migration of dermomyotomal muscle progenitor cells. Development 120(3):603–612

    PubMed  CAS  Google Scholar 

  • Brand-Saberi B, Wilting J, Ebensperger C, Christ B (1996) The formation of somite compartments in the avian embryo. Int J Dev Biol 40(1):411–420

    PubMed  CAS  Google Scholar 

  • Chevallier A, Kieny M, Mauger A (1977) Limb-somite relationship: origin of the limb musculature. J Embryol Exp Morphol 41:245–258

    PubMed  CAS  Google Scholar 

  • Christ B, Brand-Saberi B (2002) Limb muscle development. Int J Dev Biol 46(7):905–914

    PubMed  CAS  Google Scholar 

  • Christ B, Ordahl CP (1995) Early stages of chick somite development. Anat Embryol 191(5):381–396

    Article  PubMed  CAS  Google Scholar 

  • Christ B, Jacob HJ, Jacob M (1977) Experimental analysis of the origin of the wing musculature in avian embryos. Anat Embryol 150(2):171–186

    Article  PubMed  CAS  Google Scholar 

  • David TJ, Winter RM (1985) Familial absence of the pectoralis major, serratus anterior, and latissimus dorsi muscles. J Med Genet 22(5):390–392

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Deng H, Liu R, Ellmeier W, Choe S, Unutmaz D, Burkhart M, Di Marzio P, Marmon S, Sutton RE, Hill CM, Davis CB, Peiper SC, Schall TJ, Littman DR, Landau NR (1996) Identification of a major co-receptor for primary isolates of HIV-1. Nature 381(6584):661–666

    Article  PubMed  CAS  Google Scholar 

  • Dietrich S, Abou-Rebyeh F, Brohmann H, Bladt F, Sonnenberg-Riethmacher E, Yamaai T, Lumsden A, Brand-Saberi B, Birchmeier C (1999) The role of SF/HGF and c-Met in the development of skeletal muscle. Development 126(8):1621–1629

    PubMed  CAS  Google Scholar 

  • Doitsidou M, Reichman-Fried M, Stebler J, Köprunner M, Dörries J, Meyer D, Esguerra CV, Leung T, Raz E (2002) Guidance of primordial germ cell migration by the chemokine SDF-1. Cell 111(5):647–659

    Article  PubMed  CAS  Google Scholar 

  • Doranz BJ, Rucker J, Yi Y, Smyth RJ, Samson M, Peiper SC, Parmentier M, Collman RG, Doms RW (1996) A dual-tropic primary HIV-1 isolate that uses fusin and the beta-chemokine receptors CKR-5, CKR-3, and CKR-2b as fusion cofactors. Cell 85(7):1149–1158

    Article  PubMed  CAS  Google Scholar 

  • Feng Y, Broder CC, Kennedy PE, Berger EA (1996) HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science 272(5263):872–877

    Article  PubMed  CAS  Google Scholar 

  • Franz T, Kothary R, Surani MA, Halata Z, Grim M (1993) The Splotch mutation interferes with muscle development in the limbs. Anat Embryol 187(2):153–160

    Article  PubMed  CAS  Google Scholar 

  • Gavrieli Y, Sherman Y, Ben-Sasson SA (1992) Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol 119(3):493–501

    Article  PubMed  CAS  Google Scholar 

  • Grim M (1971) Development of the primordia of the latissimus dorsi muscle of the chicken. Folia Morphol 19(3):252–258

    CAS  Google Scholar 

  • Hamburger V, Hamilton HL (1951) A series of normal stages in the development of the chick embryo. J Morphol 88:1

    Article  Google Scholar 

  • Hegde HR, Shokeir MH (1982) Posterior shoulder girdle abnormalities with absence of pectoralis major muscle. Am J Med Genet 13(3):285–293

    Article  PubMed  CAS  Google Scholar 

  • Hiratsuka S, Duda DG, Huang Y, Goel S, Sugiyama T, Nagasawa T, Fukumura D, Jain RK (2011) C-X-C receptor type 4 promotes metastasis by activating p38 mitogen-activated protein kinase in myeloid differentiation antigen (Gr-1)-positive cells. Proc Natl Acad Sci USA 108(1):302–307

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Huang R, Christ B (2000) Origin of the epaxial and hypaxial myotome in avian embryos. Anat Embryol 202(5):369–374

    Article  PubMed  CAS  Google Scholar 

  • Jones HW (1926) Congenital absence of the pectoral muscles. Br Med J 6:59–60

    Article  Google Scholar 

  • Kalcheim C, Cinnamon Y, Kahane N (1999) Myotome formation: a multistage process. Cell Tissue Res 296(1):161–173

    Article  PubMed  CAS  Google Scholar 

  • Kawakami K (2007) Tol2: a versatile gene transfer vector in vertebrates. Genome Biol 8(Suppl 1):S7

    Article  PubMed  PubMed Central  Google Scholar 

  • Kawakami K, Shima A, Kawakami N (2000) Identification of a functional transposase of the Tol2 element, an Ac-like element from the Japanese medaka fish, and its transposition in the zebrafish germ lineage. Proc Natl Acad Sci USA 97(21):11403–11408

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Knaut H, Werz C, Geisler R, Nüsslein-Volhard C, Tübingen 2000 Screen Consortium (2003) A zebrafish homologue of the chemokine receptor Cxcr4 is a germ-cell guidance receptor. Nature 421(6920):279–282

    Article  PubMed  CAS  Google Scholar 

  • Koga A, Suzuki M, Inagaki H, Bessho Y, Hori H (1996) Transposable element in fish. Nature 383(6595):30

    Article  PubMed  CAS  Google Scholar 

  • Krull CE (2004) A primer on using in ovo electroporation to analyze gene function. Dev Dyn 229(3):433–439

    Article  PubMed  CAS  Google Scholar 

  • Lanser ME, Fallon JF (1987) Development of wing-bud-derived muscles in normal and wingless chick embryos: a computer-assisted three-dimensional reconstruction study of muscle pattern formation in the absence of skeletal elements. Anat Rec 217(1):61–78

    Article  PubMed  CAS  Google Scholar 

  • Lazarini F, Tham TN, Casanova P, Arenzana-Seisdedos F, Dubois-Dalcq M (2003) Role of the alpha-chemokine stromal cell-derived factor (SDF-1) in the developing and mature central nervous system. Glia 42(2):139–148

    Article  PubMed  Google Scholar 

  • Ma Q, Jones D, Borghesani PR, Segal RA, Nagasawa T, Kishimoto T, Bronson RT, Springer TA (1998) Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in CXCR4- and SDF-1-deficient mice. Proc Natl Acad Sci USA 95(16):9448–9453

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Mansouri A, Hallonet M, Gruss P (1996) Pax genes and their roles in cell differentiation and development. Curr Opin Cell Biol 8(6):851–857

    Article  PubMed  CAS  Google Scholar 

  • Marcelle C, Wolf J, Bronner-Fraser M (1995) The in vivo expression of the FGF receptor FREK mRNA in avian myoblasts suggests a role in muscle growth and differentiation. Dev Biol 172(1):100–114

    Article  PubMed  CAS  Google Scholar 

  • Masyuk M, Morosan-Puopolo G, Brand-Saberi B, Theiss C (2014) Combination of in ovo electroporation and time-lapse imaging to study migrational events in chicken embryos. Dev Dyn 243(5):690–698

    Article  PubMed  Google Scholar 

  • Mauger A (1972a) The role of somitic mesoderm in the development of dorsal plumage in chick embryos. I. Origin, regulative capacity and determination of the plumage-forming mesoderm. J Embryol Exp Morphol 28(2):313–341 (article in French)

    PubMed  CAS  Google Scholar 

  • Mauger A (1972b) The role of somitic mesoderm in the development of dorsal plumage in chick embryos. II. Regionalization of the plumage-forming mesoderm. J Embryol Exp Morphol 28(2):343–366 (article in French)

    PubMed  CAS  Google Scholar 

  • Morosan-Puopolo G, Balakrishnan-Renuka A, Yusuf F, Chen J, Dai F, Zoidl G, Lüdtke TH, Kispert A, Theiss C, Abdelsabour-Khalaf M, Brand-Saberi B (2014) Wnt11 is required for oriented migration of dermogenic progenitor cells from the dorsomedial lip of the avian dermomyotome. PLoS ONE 9(3):e92679

    Article  PubMed  PubMed Central  Google Scholar 

  • Mosconi T, Kamath S (2003) Bilateral asymmetric deficiency of the pectoralis major muscle. Clin Anat 16(4):346–349

    Article  PubMed  Google Scholar 

  • Müller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME, McClanahan T, Murphy E, Yuan W, Wagner SN, Barrera JL, Mohar A, Verástegui E, Zlotnik A (2001) Involvement of chemokine receptors in breast cancer metastasis. Nature 410(6824):50–56

    Article  PubMed  Google Scholar 

  • Nagashima H, Sugahara F, Takechi M, Ericsson R, Kawashima-Ohya Y, Narita Y, Kuratani S (2009) Evolution of the turtle body plan by the folding and creation of new muscle connections. Science 325(5937):193–196

    Article  PubMed  CAS  Google Scholar 

  • Nieto MA, Patel K, Wilkinson DG (1996) In situ hybridization analysis of chick embryos in whole mount and tissue sections. Methods Cell Biol 51:219–235

    Article  PubMed  CAS  Google Scholar 

  • Olivera-Martinez I, Coltey M, Dhouailly D, Pourquié O (2000) Mediolateral somitic origin of ribs and dermis determined by quail-chick chimeras. Development 127(21):4611–4617

    PubMed  CAS  Google Scholar 

  • Olivera-Martinez I, Missier S, Fraboulet S, Thélu J, Dhouailly D (2002) Differential regulation of the chick dorsal thoracic dermal progenitors from the medial dermomyotome. Development 129(20):4763–4772

    PubMed  CAS  Google Scholar 

  • Olivera-Martinez I, Thélu J, Dhouailly D (2004) Molecular mechanisms controlling dorsal dermis generation from the somitic dermomyotome. Int J Dev Biol 48(2–3):93–101

    Article  PubMed  CAS  Google Scholar 

  • Ordahl CP, Le Douarin NM (1992) Two myogenic lineages within the developing somite. Development 114(2):339–353

    PubMed  CAS  Google Scholar 

  • Ott MO, Bober E, Lyons G, Arnold H, Buckingham M (1991) Early expression of the myogenic regulatory gene, myf-5, in precursor cells of skeletal muscle in the mouse embryo. Development 111(4):1097–1107

    PubMed  CAS  Google Scholar 

  • Paraskevas GK, Raikos A (2010) Bilateral pectoral musculature malformations with concomitant vascular anomaly. Folia Morphol 69(3):187–191

    CAS  Google Scholar 

  • Poland A (1841) Deficiency of the pectoral muscles. Guys Hosp Rep 6:191–193

    Google Scholar 

  • Pownall ME, Emerson CP Jr (1992) Sequential activation of three myogenic regulatory genes during somite morphogenesis in quail embryos. Dev Biol 151(1):67–79

    Article  PubMed  CAS  Google Scholar 

  • Pu Q, Abduelmula A, Masyuk M, Theiss C, Schwandulla D, Hans M, Patel K, Brand-Saberi B, Huang R (2013) The dermomyotome ventrolateral lip is essential for the hypaxial myotome formation. BMC Dev Biol 13:37

    Article  PubMed  PubMed Central  Google Scholar 

  • Pujol F, Kitabgi P, Boudin H (2005) The chemokine SDF-1 differentially regulates axonal elongation and branching in hippocampal neurons. J Cell Sci 118(Pt 5):1071–1080

    Article  PubMed  CAS  Google Scholar 

  • Rehimi R, Khalida N, Yusuf F, Dai F, Morosan-Puopolo G, Brand-Saberi B (2008) Stromal-derived factor-1 (SDF-1) expression during early chick development. Int J Dev Biol 52(1):87–92

    Article  PubMed  CAS  Google Scholar 

  • Rehimi R, Khalida N, Yusuf F, Morosan-Puopolo G, Brand-Saberi B (2010) A novel role of CXCR4 and SDF-1 during migration of cloacal muscle precursors. Dev Dyn 239(6):1622–1631

    Article  PubMed  CAS  Google Scholar 

  • Sassoon DA (1993) Myogenic regulatory factors: dissecting their role and regulation during vertebrate embryogenesis. Dev Biol 156(1):11–23

    Article  PubMed  CAS  Google Scholar 

  • Sato Y, Kasai T, Nakagawa S, Tanabe K, Watanabe T, Kawakami K, Takahashi Y (2007) Stable integration and conditional expression of electroporated transgenes in chicken embryos. Dev Biol 305(2):616–624

    Article  PubMed  CAS  Google Scholar 

  • Stebler J, Spieler D, Slanchev K, Molyneaux KA, Richter U, Cojocaru V, Tarabykin V, Wylie C, Kessel M, Raz E (2004) Primordial germ cell migration in the chick and mouse embryo: the role of the chemokine SDF-1/CXCL12. Dev Biol 272(2):351–361

    Article  PubMed  CAS  Google Scholar 

  • Sullivan GE (1962) Anatomy and embryology of the wing musculature of the domestic fowl (Gallus). Aust J Zool 10:458–516

    Article  Google Scholar 

  • Tajbakhsh S, Rocancourt D, Cossu G, Buckingham M (1997) Redefining the genetic hierarchies controlling skeletal myogenesis: Pax-3 and Myf-5 act upstream of MyoD. Cell 89(1):127–138

    Article  PubMed  CAS  Google Scholar 

  • Tamamura H, Xu Y, Hattori T, Zhang X, Arakaki R, Kanbara K, Omagari A, Otaka A, Ibuka T, Yamamoto N, Nakashima H, Fujii N (1998) A low-molecular-weight inhibitor against the chemokine receptor CXCR4: a strong anti-HIV peptide T140. Biochem Biophys Res Commun 253(3):877–882

    Article  PubMed  CAS  Google Scholar 

  • Tamamura H, Omagari A, Hiramatsu K, Gotoh K, Kanamoto T, Xu Y, Kodama E, Matsuoka M, Hattori T, Yamamoto N, Nakashima H, Otaka A, Fujii N (2001) Development of specific CXCR4 inhibitors possessing high selectivity indexes as well as complete stability in serum based on an anti-HIV peptide T140. Bioorg Med Chem Lett 11(14):1897–1902

    Article  PubMed  CAS  Google Scholar 

  • Valasek P, Evans DJ, Maina F, Grim M, Patel K (2005) A dual fate of the hindlimb muscle mass: cloacal/perineal musculature develops from leg muscle cells. Development 132(3):447–458

    Article  PubMed  CAS  Google Scholar 

  • Valasek P, Theis S, DeLaurier A, Hinits Y, Luke GN, Otto AM, Minchin J, He L, Christ B, Brooks G, Sang H, Evans DJ, Logan M, Huang R, Patel K (2011) Cellular and molecular investigations into the development of the pectoral girdle. Dev Biol 357(1):108–116

    Article  PubMed  CAS  Google Scholar 

  • Vasyutina E, Birchmeier C (2006) The development of migrating muscle precursor cells. Anat Embryol 211(Suppl 1):37–41

    PubMed  Google Scholar 

  • Vasyutina E, Stebler J, Brand-Saberi B, Schulz S, Raz E, Birchmeier C (2005) CXCR4 and Gab1 cooperate to control the development of migrating muscle progenitor cells. Genes Dev 19(18):2187–2198

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wilting J, Brand-Saberi B, Huang R, Zhi Q, Köntges G, Ordahl CP, Christ B (1995) Angiogenic potential of the avian somite. Dev Dyn 202(2):165–171

    Article  PubMed  CAS  Google Scholar 

  • Wilting J, Schneider M, Papoutski M, Alitalo K, Christ B (2000) An avian model for studies of embryonic lymphangiogenesis. Lymphology 33(3):81–94

    PubMed  CAS  Google Scholar 

  • Wilting J, Papoutsi M, Othman-Hassan K, Rodriguez-Niedenführ M, Pröls F, Tomarev SI, Eichmann A (2001) Development of the avian lymphatic system. Microsc Res Tech 55(2):81–91

    Article  PubMed  CAS  Google Scholar 

  • Yusuf F, Brand-Saberi B (2006) The eventful somite: patterning, fate determination and cell division in the somite. Anat Embryol 211(Suppl 1):21–30

    PubMed  Google Scholar 

  • Yusuf F, Brand-Saberi B (2012) Myogenesis and muscle regeneration. Histochem Cell Biol 138(2):187–199

    Article  PubMed  CAS  Google Scholar 

  • Yusuf F, Rehimi R, Dai F, Brand-Saberi B (2005) Expression of chemokine receptor CXCR4 during chick embryo development. Anat Embryol 210(1):35–41

    Article  PubMed  CAS  Google Scholar 

  • Zou YR, Kottmann AH, Kuroda M, Taniuchi I, Littman DR (1998) Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature 393(6685):595–599

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Prof. Dr. Ruijin Huang. M. Masyuk especially thanks FoRUM (RUB) for financial support by providing a dissertation scholarship. The authors further acknowledge S. Wulf, R. Houmany, and especially A. Lodwig for excellent technical assistance as well as A. Lenz and A. Conrad for secretarial work. This work was supported by MYORES project (511978) funded by the EU´s Sixth Framework Programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beate Brand-Saberi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

418_2014_1237_MOESM1_ESM.tif

Fig. S1. CXCR4 inhibitor TN14003 does not cause cell death. CXCR4-inhibitor-soaked beads were implanted in the dorsal proximal forelimb region of HH23 chicken embryos. After reincubation up to stage HH26, TUNEL assay on transverse sections through the forelimb region was performed. (A,B) No increased apoptosis was discernible in the area around the CXCR4 inhibitor bead, while single physiologically apoptotic cells (red) were detectable in various locations of the specimen. (C,D) Tissue sections treated with bovine pancreas DNase I that cleaves the DNA-revealed apoptotic cells (red) over the entire specimen. (B,D) are higher magnification views of the bead areas in (A,C). Scale bars: 100 µm. (TIFF 6132 kb)

Movie 1. Live-cell imaging of the retrograde migration during the retrograde migration of pectoral girdle muscle precursors. The movie relates to Fig. 2. Using in ovo electroporation of the ventrolateral dermomyotome of HH14 chicken embryos, premyogenic precursor cells were labeled with Tol2-EGFP construct. After reincubation up to stage HH26, slice cultures of the forelimb region were prepared. With the aid of confocal laser scanning microscopy, time-lapse movies that capture the retrograde migration of myogenic precursors from the forelimb bud toward the trunk were recorded. The myogenic precursor cells (green) are not restricted to the forelimb bud, but two groups of EGFP-labeled precursors are also visible in the dorsal and ventral pectoral girdle region, respectively. Individual cells actively migrate from the forelimb bud toward the trunk. This retrograde migration represents the “Out”-phase of the “In–Out” mechanism deployed during formation of pectoral girdle muscles. During monitoring the cells reveal a high proliferation rate. Scale bar: 100 µm. (MP4 2426 kb)

Movie 2. CXCR4 inhibitor TN14003 affects the retrograde migration of pectoral girdle muscle precursors. The movie relates to Fig. 5. Using in ovo electroporation of the ventrolateral dermomyotome of HH14 chicken embryos, premyogenic precursor cells were labeled with Tol2-EGFP construct. After reincubation up to stage HH23, acrylic beads soaked in CXCR4 inhibitor TN14003 were implanted into the dorsal proximal forelimb. After reincubation up to stage HH26, slice cultures of the forelimb region were prepared. With the aid of confocal laser scanning microscopy, time-lapse movies were recorded. The myogenic precursor cells (green) are visible in the dorsal and ventral forelimb region. The EGFP-labeled myogenic precursors in the dorsal forelimb show highly intensive movements during the entire recording period, but do not succeed in penetrating the area with the CXCR4 inhibitor solution. The retrograde migration of myogenic precursors required for the formation of pectoral girdle muscles is thus affected by the CXCR4 inhibitor TN14003. Scale bar: 100 µm. (MP4 2693 kb)

Movie 3. The acrylic bead does not mechanically affect the retrograde migration of pectoral girdle muscle precursors. The movie relates to Fig. 6. Using in ovo electroporation of the ventrolateral dermomyotome of HH14 chicken embryos, premyogenic precursor cells were labeled with Tol2-EGFP construct. After reincubation up to stage HH23, acrylic beads soaked in CXCR4 inhibitor TN14003 were implanted into the dorsal proximal forelimb. After reincubation up to stage HH26, slice cultures of the forelimb region were prepared. With the aid of confocal laser scanning microscopy, time-lapse movies were recorded. The myogenic precursor cells (green) are visible in the dorsal and ventral forelimb region. During the entire monitoring period, the EGFP-labeled myogenic precursors in the vicinity of the PBS-soaked acrylic bead reveal active motility. We can observe an individual progenitor cell actively migrating in the retrograde migration toward the trunk and passing across the PBS bead without any difficulties. Thus, the acrylic bead does not present a mechanical obstacle for the retrograde migration of the myogenic precursor cell. Scale bar: 100 µm. (MP4 2304 kb)

Movie 4. Tol2-EGFP-transfected cells are not affected by electroporation. The ventrolateral dermomyotome of HH14 chicken embryos was transfected with the Tol2-EGFP construct using electroporation. After three days of reincubation, slice cultures of the forelimb region were prepared. After another four days of reincubation, a movie was recorded using a fluorescent microscope. Contractile and viable EGFP-labeled fibers are detectable, demonstrating that the physiological development of myogenic precursor cells is not adversely affected by in ovo electroporation technique. (MP4 2393 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masyuk, M., Abduelmula, A., Morosan-Puopolo, G. et al. Retrograde migration of pectoral girdle muscle precursors depends on CXCR4/SDF-1 signaling. Histochem Cell Biol 142, 473–488 (2014). https://doi.org/10.1007/s00418-014-1237-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-014-1237-7

Keywords

Navigation