Skip to main content

Advertisement

Log in

Myogenesis and muscle regeneration

  • Review
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Skeletal muscle has received much attention with regard to developmental origin, control of cell differentiation and regeneration. In this article, early landmarks in skeletal muscle research are reviewed and recent findings on myogenesis are addressed with particular focus on novel regulatory molecules including miRNAs, as well as on the topographical heterogeneity of skeletal muscle origin. The latter has developed into a central theme of keen interest in the past years, particularly since overlaps in genetic and embryological background between head muscle subsets and heart muscle have been described. As embryonic myogenesis and regenerating myofibers employ common molecules, the heterogeneity in embryonic sources from which skeletal muscle groups in the vertebrate body take origin is closely reflected by differences in the susceptibility to particular muscle dystrophies as well as their regeneration potential. In the regeneration chapter of this review the progress that has been made in the field of muscle stem cell biology, with special focus on the satellite cells, is outlined. Satellite cells are considered the most promising source of muscle stem cells possessing a high regenerative potential. We shall discuss recent insights into the heterogeneous nature of these satellite cells not just in terms of their expression profile but also their regeneration potential. Latest findings about the motility of the satellite cell shall also be discussed. Furthermore, we shall outline the impact of an improved understanding of muscle stem cells within their environment, and of satellite cells in particular, on efficient stem cell replacement therapies for muscular dystrophies, putting embryological findings and stem cell approaches into context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alexander MS, Casar JC, Motohashi N, Myers JA, Eisenberg I, Gonzalez RT, Estrella EA, Kang PB, Kawahara G, Kunkel LM (2011) Regulation of DMD pathology by an ankyrin-encoded miRNA. Skelet Muscle 1:27

  • Allbrook D (1962) An electron microscopic study of regenerating skeletal muscle. J Anat 96:137–152

    PubMed  CAS  Google Scholar 

  • Ambros V (2004) The functions of animal microRNAs. Nature 431:350–355

    Article  PubMed  CAS  Google Scholar 

  • Anakwe K, Robson L, Hadley J, Buxton P, Church V, Allen S, Hartmann C, Harfe B, Nohno T, Brown AM, Evans DJ, Francis-West P (2003) Wnt signalling regulates myogenic differentiation in the developing avian wing. Development 130:3503–3514

    Article  PubMed  CAS  Google Scholar 

  • Anderson C, Catoe H, Werner R (2006) MIR-206 regulates connexin43 expression during skeletal muscle development. Nucleic Acids Res 34:5863–5871

    Article  PubMed  CAS  Google Scholar 

  • Asakura A, Komaki M, Rudnicki M (2001) Muscle satellite cells are multipotential stem cells that exhibit myogenic, osteogenic, and adipogenic differentiation. Differentiation 68:245–253

    Article  PubMed  CAS  Google Scholar 

  • Aulehla A, Pourquie O (2006) On periodicity and directionality of somitogenesis. Anat Embryol (Berl) 211(1):3–8

    Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  PubMed  CAS  Google Scholar 

  • Ben-Yair R, Kalcheim C (2005) Lineage analysis of the avian dermomyotome sheet reveals the existence of single cells with both dermal and muscle progenitor fates. Development 132:689–701

    Article  PubMed  CAS  Google Scholar 

  • Ben-Yair R, Kalcheim C (2008) Notch and bone morphogenetic protein differentially act on dermomyotome cells to generate endothelium, smooth, and striated muscle. J Cell Biol 180:607–618

    Article  PubMed  CAS  Google Scholar 

  • Ben-Yair R, Kahane N, Kalcheim C (2003) Coherent development of dermomyotome and dermis from the entire mediolateral extent of the dorsal somite. Development 130:4325–4336

    Article  PubMed  CAS  Google Scholar 

  • Birchmeier C, Brohmann H (2000) Genes that control the development of migrating muscle precursor cells. Curr Opin Cell Biol 12:725–730

    Article  PubMed  CAS  Google Scholar 

  • Bladt F, Riethmacher D, Isenmann S, Aguzzi A, Birchmeier C (1995) Essential role for the c-met receptor in the migration of myogenic precursor cells into the limb bud. Nature 376:768–771

    Article  PubMed  CAS  Google Scholar 

  • Blau HM, Webster C, Pavlath GK (1983) Defective myoblasts identified in Duchenne muscular dystrophy. Proc Natl Acad Sci USA 80:4856–4860

    Article  PubMed  CAS  Google Scholar 

  • Bober E, Franz T, Arnold HH, Gruss P, Tremblay P (1994) Pax-3 is required for the development of limb muscles: a possible role for the migration of dermomyotomal muscle progenitor cells. Development 120:603–612

    PubMed  CAS  Google Scholar 

  • Boldrin L, Muntoni F, Morgan JE (2010) Are human and mouse satellite cells really the same? J Histochem Cytochem 58:941–955

    Article  PubMed  CAS  Google Scholar 

  • Bonafede A, Kohler T, Rodriguez-Niedenfuhr M, Brand-Saberi B (2006) BMPs restrict the position of premuscle masses in the limb buds by influencing Tcf4 expression. Dev Biol 299:330–344

    Article  PubMed  CAS  Google Scholar 

  • Bothe I, Dietrich S (2006) The molecular setup of the avian head mesoderm and its implication for craniofacial myogenesis. Dev Dyn 235:2845–2860

    Article  PubMed  CAS  Google Scholar 

  • Brand-Saberi B, Muller TS, Wilting J, Christ B, Birchmeier C (1996) Scatter factor/hepatocyte growth factor (SF/HGF) induces emigration of myogenic cells at interlimb level in vivo. Dev Biol 179:303–308

    Article  PubMed  CAS  Google Scholar 

  • Braun T, Buschhausen-Denker G, Bober E, Tannich E, Arnold HH (1989) A novel human muscle factor related to but distinct from MyoD1 induces myogenic conversion in 10T1/2 fibroblasts. EMBO J 8:701–709

    PubMed  CAS  Google Scholar 

  • Braun T, Bober E, Winter B, Rosenthal N, Arnold HH (1990) Myf-6, a new member of the human gene family of myogenic determination factors: evidence for a gene cluster on chromosome 12. EMBO J 9:821–831

    PubMed  CAS  Google Scholar 

  • Brohmann H, Jagla K, Birchmeier C (2000) The role of Lbx1 in migration of muscle precursor cells. Development 127:437–445

    PubMed  CAS  Google Scholar 

  • Carlson BM (1973) The functional morphology of regenerating and transplanted mammalian muscles. J Physiol 231:57P–58P

    PubMed  CAS  Google Scholar 

  • Cerletti M, Jurga S, Witczak CA, Hirshman MF, Shadrach JL, Goodyear LJ, Wagers AJ (2008) Highly efficient, functional engraftment of skeletal muscle stem cells in dystrophic muscles. Cell 134:37–47

    Article  PubMed  CAS  Google Scholar 

  • Chen JF, Mandel EM, Thomson JM, Wu Q, Callis TE, Hammond SM, Conlon FL, Wang DZ (2006) The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet 38:228–233

    Article  PubMed  CAS  Google Scholar 

  • Christ B, Ordahl CP (1995) Early stages of chick somite development. Anat Embryol (Berl) 191:381–396

    Article  CAS  Google Scholar 

  • Christ B, Jacob HJ, Jacob M (1974) Origin of wing musculature. Experimental studies on quail and chick embryos. Experientia 30:1446–1449

    Article  PubMed  CAS  Google Scholar 

  • Christ B, Jacob HJ, Jacob M (1977) Experimental analysis of the origin of the wing musculature in avian embryos. Anat Embryol (Berl) 150:171–186

    Article  CAS  Google Scholar 

  • Christ B, Jacob HJ, Jacob M (1978) Regional determination of early embryonic muscle primordium. Experimental studies on quail and chick embryos (demonstration). Verh Anat Ges:353–357

  • Collins CA, Zammit PS, Ruiz AP, Morgan JE, Partridge TA (2007) A population of myogenic stem cells that survives skeletal muscle aging. Stem Cells 25:885–894

    Article  PubMed  CAS  Google Scholar 

  • Dastjerdi A, Robson L, Walker R, Hadley J, Zhang Z, Rodriguez-Niedenfuhr M, Ataliotis P, Baldini A, Scambler P, Francis-West P (2007) Tbx1 regulation of myogenic differentiation in the limb and cranial mesoderm. Dev Dyn 236:353–363

    Article  PubMed  CAS  Google Scholar 

  • Dey BK, Gagan J, Dutta A (2011) miR-206 and -486 induce myoblast differentiation by downregulating Pax7. Mol Cell Biol 31:203–214

    Article  PubMed  CAS  Google Scholar 

  • Dietrich S, Abou-Rebyeh F, Brohmann H, Bladt F, Sonnenberg-Riethmacher E, Yamaai T, Lumsden A, Brand-Saberi B, Birchmeier C (1999) The role of SF/HGF and c-Met in the development of skeletal muscle. Development 126:1621–1629

    PubMed  CAS  Google Scholar 

  • Dong F, Sun X, Liu W, Ai D, Klysik E, Lu MF, Hadley J, Antoni L, Chen L, Baldini A, Francis-West P, Martin JF (2006) Pitx2 promotes development of splanchnic mesoderm-derived branchiomeric muscle. Development 133:4891–4899

    Article  PubMed  CAS  Google Scholar 

  • Edmondson DG, Olson EN (1989) A gene with homology to the myc similarity region of MyoD1 is expressed during myogenesis and is sufficient to activate the muscle differentiation program. Genes Dev 3:628–640

    Article  PubMed  CAS  Google Scholar 

  • Epstein JA, Shapiro DN, Cheng J, Lam PY, Maas RL (1996) Pax3 modulates expression of the c-Met receptor during limb muscle development. Proc Natl Acad Sci USA 93:4213–4218

    Article  PubMed  CAS  Google Scholar 

  • Fabian MR, Sonenberg N, Filipowicz W (2010) Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem 79:351–379

    Article  PubMed  CAS  Google Scholar 

  • Ferrari G, Cusella-De Angelis G, Coletta M, Paolucci E, Stornaiuolo A, Cossu G, Mavilio F (1998) Muscle regeneration by bone marrow-derived myogenic progenitors. Science 279:1528–1530

    Article  PubMed  CAS  Google Scholar 

  • Franz T (1993) The Splotch (Sp1H) and Splotch-delayed (Spd) alleles: differential phenotypic effects on neural crest and limb musculature. Anat Embryol (Berl) 187:371–377

    CAS  Google Scholar 

  • Franz T, Kothary R, Surani MA, Halata Z, Grim M (1993) The Splotch mutation interferes with muscle development in the limbs. Anat Embryol (Berl) 187:153–160

    CAS  Google Scholar 

  • Geetha-Loganathan P, Nimmagadda S, Prols F, Patel K, Scaal M, Huang R, Christ B (2005) Ectodermal Wnt-6 promotes Myf5-dependent avian limb myogenesis. Dev Biol 288:221–233

    Article  PubMed  CAS  Google Scholar 

  • Gilbert PM, Havenstrite KL, Magnusson KE, Sacco A, Leonardi NA, Kraft P, Nguyen NK, Thrun S, Lutolf MP, Blau HM (2010) Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture. Science 329:1078–1081

    Article  PubMed  CAS  Google Scholar 

  • Griffin CA, Apponi LH, Long KK, Pavlath GK (2010) Chemokine expression and control of muscle cell migration during myogenesis. J Cell Sci 123:3052–3060

    Article  PubMed  CAS  Google Scholar 

  • Grifone R, Kelly RG (2007) Heartening news for head muscle development. Trends Genet 23:365–369

    Article  PubMed  CAS  Google Scholar 

  • Grifone R, Demignon J, Houbron C, Souil E, Niro C, Seller MJ, Hamard G, Maire P (2005) Six1 and Six4 homeoproteins are required for Pax3 and Mrf expression during myogenesis in the mouse embryo. Development 132:2235–2249

    Article  PubMed  CAS  Google Scholar 

  • Grifone R, Demignon J, Giordani J, Niro C, Souil E, Bertin F, Laclef C, Xu PX, Maire P (2007) Eya1 and Eya2 proteins are required for hypaxial somitic myogenesis in the mouse embryo. Dev Biol 302:602–616

    Article  PubMed  CAS  Google Scholar 

  • Grim M (1970) Differentiation of myoblasts and the relationship between somites and the wing bud of the chick embryo. Z Anat Entwicklungsgesch 132:260–271

    Article  PubMed  CAS  Google Scholar 

  • Gros J, Scaal M, Marcelle C (2004) A two-step mechanism for myotome formation in chick. Dev Cell 6:875–882

    Article  PubMed  CAS  Google Scholar 

  • Gros J, Manceau M, Thome V, Marcelle C (2005) A common somitic origin for embryonic muscle progenitors and satellite cells. Nature 435:954–958

    Article  PubMed  CAS  Google Scholar 

  • Gross MK, Moran-Rivard L, Velasquez T, Nakatsu MN, Jagla K, Goulding M (2000) Lbx1 is required for muscle precursor migration along a lateral pathway into the limb. Development 127:413–424

    PubMed  CAS  Google Scholar 

  • Harel I, Nathan E, Tirosh-Finkel L, Zigdon H, Guimaraes-Camboa N, Evans SM, Tzahor E (2009) Distinct origins and genetic programs of head muscle satellite cells. Dev Cell 16:822–832

    Article  PubMed  CAS  Google Scholar 

  • Hawke TJ, Garry DJ (2001) Myogenic satellite cells: physiology to molecular biology. J Appl Physiol 91:534–551

    PubMed  CAS  Google Scholar 

  • Heymann S, Koudrova M, Arnold H, Koster M, Braun T (1996) Regulation and function of SF/HGF during migration of limb muscle precursor cells in chicken. Dev Biol 180:566–578

    Article  PubMed  CAS  Google Scholar 

  • Huang R, Christ B (2000) Origin of the epaxial and hypaxial myotome in avian embryos. Anat Embryol (Berl) 202:369–374

    Article  CAS  Google Scholar 

  • Huang R, Zhi Q, Izpisua-Belmonte JC, Christ B, Patel K (1999) Origin and development of the avian tongue muscles. Anat Embryol (Berl) 200:137–152

    Article  CAS  Google Scholar 

  • Ishido M, Kasuga N (2011) In situ real-time imaging of the satellite cells in rat intact and injured soleus muscles using quantum dots. Histochem Cell Biol 135:21–26

    Article  PubMed  CAS  Google Scholar 

  • Jacob M, Christ B, Jacob HJ (1979) The migration of myogenic cells from the somites into the leg region of avian embryos. An ultrastructural study. Anat Embryol (Berl) 157:291–309

    Article  CAS  Google Scholar 

  • Joe AW, Yi L, Natarajan A, Le Grand F, So L, Wang J, Rudnicki MA, Rossi FM (2010) Muscle injury activates resident fibro/adipogenic progenitors that facilitate myogenesis. Nat Cell Biol 12:153–163

    Article  PubMed  CAS  Google Scholar 

  • Johnston AP, Baker J, Bellamy LM, McKay BR, De Lisio M, Parise G (2010) Regulation of muscle satellite cell activation and chemotaxis by angiotensin II. PLoS ONE 5:e15212

    Article  PubMed  CAS  Google Scholar 

  • Kahane N, Cinnamon Y, Bachelet I, Kalcheim C (2001) The third wave of myotome colonization by mitotically competent progenitors: regulating the balance between differentiation and proliferation during muscle development. Development 128:2187–2198

    PubMed  CAS  Google Scholar 

  • Kahane N, Ben-Yair R, Kalcheim C (2007) Medial pioneer fibers pattern the morphogenesis of early myoblasts derived from the lateral somite. Dev Biol 305:439–450

    Article  PubMed  CAS  Google Scholar 

  • Kalcheim C, Cinnamon Y, Kahane N (1999) Myotome formation: a multistage process. Cell Tissue Res 296:161–173

    Article  PubMed  CAS  Google Scholar 

  • Kallestad KM, Hebert SL, McDonald AA, Daniel ML, Cu SR, McLoon LK (2011) Sparing of extraocular muscle in aging and muscular dystrophies: a myogenic precursor cell hypothesis. Exp Cell Res 317:873–885

    Article  PubMed  CAS  Google Scholar 

  • Kardon G, Campbell JK, Tabin CJ (2002) Local extrinsic signals determine muscle and endothelial cell fate and patterning in the vertebrate limb. Dev Cell 3:533–545

    Article  PubMed  CAS  Google Scholar 

  • Kassar-Duchossoy L, Gayraud-Morel B, Gomes D, Rocancourt D, Buckingham M, Shinin V, Tajbakhsh S (2004) Mrf4 determines skeletal muscle identity in Myf5: Myod double-mutant mice. Nature 431:466–471

    Article  PubMed  CAS  Google Scholar 

  • Kassar-Duchossoy L, Giacone E, Gayraud-Morel B, Jory A, Gomes D, Tajbakhsh S (2005) Pax3/Pax7 mark a novel population of primitive myogenic cells during development. Genes Dev 19:1426–1431

    Article  PubMed  CAS  Google Scholar 

  • Kim HK, Lee YS, Sivaprasad U, Malhotra A, Dutta A (2006) Muscle-specific microRNA miR-206 promotes muscle differentiation. J Cell Biol 174:677–687

    Article  PubMed  CAS  Google Scholar 

  • Kuratani S (2008) Evolutionary developmental studies of cyclostomes and the origin of the vertebrate neck. Dev Growth Differ 50(Suppl 1):S189–S194

    Article  PubMed  Google Scholar 

  • Laclef C, Hamard G, Demignon J, Souil E, Houbron C, Maire P (2003) Altered myogenesis in Six1-deficient mice. Development 130:2239–2252

    Article  PubMed  CAS  Google Scholar 

  • Lagha M, Kormish JD, Rocancourt D, Manceau M, Epstein JA, Zaret KS, Relaix F, Buckingham ME (2008) Pax3 regulation of FGF signaling affects the progression of embryonic progenitor cells into the myogenic program. Genes Dev 22:1828–1837

    Article  PubMed  CAS  Google Scholar 

  • Li X, Oghi KA, Zhang J, Krones A, Bush KT, Glass CK, Nigam SK, Aggarwal AK, Maas R, Rose DW, Rosenfeld MG (2003) Eya protein phosphatase activity regulates Six1-Dach-Eya transcriptional effects in mammalian organogenesis. Nature 426:247–254

    Article  PubMed  CAS  Google Scholar 

  • Lindstrom M, Thornell LE (2009) New multiple labelling method for improved satellite cell identification in human muscle: application to a cohort of power-lifters and sedentary men. Histochem Cell Biol 132:141–157

    Article  PubMed  CAS  Google Scholar 

  • Liu N, Williams AH, Kim Y, McAnally J, Bezprozvannaya S, Sutherland LB, Richardson JA, Bassel-Duby R, Olson EN (2007) An intragenic MEF2-dependent enhancer directs muscle-specific expression of microRNAs 1 and 133. Proc Natl Acad Sci USA 104:20844–20849

    Article  PubMed  CAS  Google Scholar 

  • Liu N, Bezprozvannaya S, Williams AH, Qi X, Richardson JA, Bassel-Duby R, Olson EN (2008) microRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart. Genes Dev 22:3242–3254

    Article  PubMed  CAS  Google Scholar 

  • Mankoo BS, Collins NS, Ashby P, Grigorieva E, Pevny LH, Candia A, Wright CV, Rigby PW, Pachnis V (1999) Mox2 is a component of the genetic hierarchy controlling limb muscle development. Nature 400:69–73

    Article  PubMed  CAS  Google Scholar 

  • Mankoo BS, Skuntz S, Harrigan I, Grigorieva E, Candia A, Wright CV, Arnheiter H, Pachnis V (2003) The concerted action of Meox homeobox genes is required upstream of genetic pathways essential for the formation, patterning and differentiation of somites. Development 130:4655–4664

    Article  PubMed  CAS  Google Scholar 

  • Mansouri A, Hallonet M, Gruss P (1996) Pax genes and their roles in cell differentiation and development. Curr Opin Cell Biol 8:851–857

    Article  PubMed  CAS  Google Scholar 

  • Marcelle C, Wolf J, Bronner-Fraser M (1995) The in vivo expression of the FGF receptor FREK mRNA in avian myoblasts suggests a role in muscle growth and differentiation. Dev Biol 172:100–114

    Article  PubMed  CAS  Google Scholar 

  • Mauger A (1972a) The role of somitic mesoderm in the development of dorsal plumage in chick embryos. I. Origin, regulative capacity and determination of the plumage-forming mesoderm. J Embryol Exp Morphol 28:313–341

    PubMed  CAS  Google Scholar 

  • Mauger A (1972b) The role of somitic mesoderm in the development of dorsal plumage in chick embryos. II. Regionalization of the plumage-forming mesoderm. J Embryol Exp Morphol 28:343–366

    PubMed  CAS  Google Scholar 

  • Mauro A (1961) Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol 9:493–495

    Article  PubMed  CAS  Google Scholar 

  • McCarthy JJ (2008) MicroRNA-206: the skeletal muscle-specific myomiR. Biochim Biophys Acta 1779:682–691

    Article  PubMed  CAS  Google Scholar 

  • Millman JR, Tan JH, Colton CK (2009) The effects of low oxygen on self-renewal and differentiation of embryonic stem cells. Curr Opin Organ Transpl 14:694–700

    Article  Google Scholar 

  • Miner JH, Wold B (1990) Herculin, a fourth member of the MyoD family of myogenic regulatory genes. Proc Natl Acad Sci USA 87:1089–1093

    Article  PubMed  CAS  Google Scholar 

  • Mitchell KJ, Pannerec A, Cadot B, Parlakian A, Besson V, Gomes ER, Marazzi G, Sassoon DA (2010) Identification and characterization of a non-satellite cell muscle resident progenitor during postnatal development. Nat Cell Biol 12:257–266

    PubMed  CAS  Google Scholar 

  • Montarras D, Morgan J, Collins C, Relaix F, Zaffran S, Cumano A, Partridge T, Buckingham M (2005) Direct isolation of satellite cells for skeletal muscle regeneration. Science 309:2064–2067

    Article  PubMed  CAS  Google Scholar 

  • Mootoosamy RC, Dietrich S (2002) Distinct regulatory cascades for head and trunk myogenesis. Development 129:573–583

    PubMed  CAS  Google Scholar 

  • Nathan E, Monovich A, Tirosh-Finkel L, Harrelson Z, Rousso T, Rinon A, Harel I, Evans SM, Tzahor E (2008) The contribution of Islet1-expressing splanchnic mesoderm cells to distinct branchiomeric muscles reveals significant heterogeneity in head muscle development. Development 135:647–657

    Article  PubMed  CAS  Google Scholar 

  • Noden DM (1983) The embryonic origins of avian cephalic and cervical muscles and associated connective tissues. Am J Anat 168:257–276

    Article  PubMed  CAS  Google Scholar 

  • Noden DM, Francis-West P (2006) The differentiation and morphogenesis of craniofacial muscles. Dev Dyn 235:1194–1218

    Article  PubMed  CAS  Google Scholar 

  • Olivera-Martinez I, Coltey M, Dhouailly D, Pourquie O (2000) Mediolateral somitic origin of ribs and dermis determined by quail-chick chimeras. Development 127:4611–4617

    PubMed  CAS  Google Scholar 

  • Olivera-Martinez I, Missier S, Fraboulet S, Thelu J, Dhouailly D (2002) Differential regulation of the chick dorsal thoracic dermal progenitors from the medial dermomyotome. Development 129:4763–4772

    PubMed  CAS  Google Scholar 

  • Olivera-Martinez I, Thelu J, Dhouailly D (2004) Molecular mechanisms controlling dorsal dermis generation from the somitic dermomyotome. Int J Dev Biol 48:93–101

    Article  PubMed  CAS  Google Scholar 

  • Ono Y, Boldrin L, Knopp P, Morgan JE, Zammit PS (2010) Muscle satellite cells are a functionally heterogeneous population in both somite-derived and branchiomeric muscles. Dev Biol 337:29–41

    Article  PubMed  CAS  Google Scholar 

  • Otto A, Collins-Hooper H, Patel A, Dash PR, Patel K (2011) Adult skeletal muscle stem cell migration is mediated by a blebbing/amoeboid mechanism. Rejuvenation Res 14:249–260

    Article  PubMed  CAS  Google Scholar 

  • Paraskevas GK, Raikos A (2010) Bilateral pectoral musculature malformations with concomitant vascular anomaly. Folia Morphol (Warsz) 69:187–191

    CAS  Google Scholar 

  • Partridge TA, Morgan JE, Coulton GR, Hoffman EP, Kunkel LM (1989) Conversion of mdx myofibres from dystrophin-negative to -positive by injection of normal myoblasts. Nature 337:176–179

    Article  PubMed  CAS  Google Scholar 

  • Pavlath GK (2010) A new function for odorant receptors: MOR23 is necessary for normal tissue repair in skeletal muscle. Cell Adh Migr 4:502–506

    Article  PubMed  Google Scholar 

  • Paylor B, Natarajan A, Zhang RH, Rossi F (2011) Nonmyogenic cells in skeletal muscle regeneration. Curr Top Dev Biol 96:139–165

    Article  PubMed  CAS  Google Scholar 

  • Pestronk A (2011) Acquired immune and inflammatory myopathies: pathologic classification. Curr Opin Rheumatol 23:595–604

    Article  PubMed  CAS  Google Scholar 

  • Raikos A, Paraskevas GK, Tzika M, Faustmann P, Triaridis S, Kordali P, Kitsoulis P, Brand-Saberi B (2011a) Sternalis muscle: an underestimated anterior chest wall anatomical variant. J Cardiothorac Surg 6:73

    Article  PubMed  Google Scholar 

  • Raikos A, Paraskevas GK, Yusuf F, Kordali P, Ioannidis O, Brand-Saberi B (2011b) Sternalis muscle: a new crossed subtype, classification, and surgical applications. Ann Plast Surg 67:646–648

    Google Scholar 

  • Raikos A, Paraskevas GK, Kordali P, Triaridis S, Brand-Saberi B (2012) Bilateral supernumerary sternocleidomastoid heads with critical narrowing of the minor and major supraclavicular fossae: clinical and surgical implications (submitted)

  • Rehimi R, Khalida N, Yusuf F, Dai F, Morosan-Puopolo G, Brand-Saberi B (2008) Stromal-derived factor-1 (SDF-1) expression during early chick development. Int J Dev Biol 52:87–92

    Google Scholar 

  • Rehimi R, Khalida N, Yusuf F, Morosan-Puopolo G, Brand-Saberi B (2010) A novel role of CXCR4 and SDF-1 during migration of cloacal muscle precursors. Dev Dyn 239:1622–1631

    Google Scholar 

  • Relaix F, Rocancourt D, Mansouri A, Buckingham M (2005) A Pax3/Pax7-dependent population of skeletal muscle progenitor cells. Nature 435:948–953

    Article  PubMed  CAS  Google Scholar 

  • Rhodes SJ, Konieczny SF (1989) Identification of MRF4: a new member of the muscle regulatory factor gene family. Genes Dev 3:2050–2061

    Article  PubMed  CAS  Google Scholar 

  • Rios AC, Marcelle C (2009) Head muscles: aliens who came in from the cold? Dev Cell 16:779–780

    Article  PubMed  CAS  Google Scholar 

  • Rudnicki MA, Jaenisch R (1995) The MyoD family of transcription factors and skeletal myogenesis. BioEssays 17:203–209

    Article  PubMed  CAS  Google Scholar 

  • Sacco A, Doyonnas R, Kraft P, Vitorovic S, Blau HM (2008) Self-renewal and expansion of single transplanted muscle stem cells. Nature 456:502–506

    Article  PubMed  CAS  Google Scholar 

  • Sachs M, Brohmann H, Zechner D, Muller T, Hulsken J, Walther I, Schaeper U, Birchmeier C, Birchmeier W (2000) Essential role of Gab1 for signaling by the c-Met receptor in vivo. J Cell Biol 150:1375–1384

    Article  PubMed  CAS  Google Scholar 

  • Sambasivan R, Gayraud-Morel B, Dumas G, Cimper C, Paisant S, Kelly RG, Tajbakhsh S (2009) Distinct regulatory cascades govern extraocular and pharyngeal arch muscle progenitor cell fates. Dev Cell 16:810–821

    Article  PubMed  CAS  Google Scholar 

  • Sambasivan R, Kuratani S, Tajbakhsh S (2011) An eye on the head: the development and evolution of craniofacial muscles. Development 138:2401–2415

    Article  PubMed  CAS  Google Scholar 

  • Sampaolesi M, Torrente Y, Innocenzi A, Tonlorenzi R, D'Antona G, Pellegrino MA, Barresi R, Bresolin N, De Angelis MG, Campbell KP, Bottinelli R, Cossu G (2003) Cell therapy of alpha-sarcoglycan null dystrophic mice through intra-arterial delivery of mesoangioblasts. Science 301:487–492

    Article  PubMed  CAS  Google Scholar 

  • Scaal M, Bonafede A, Dathe V, Sachs M, Cann G, Christ B, Brand-Saberi B (1999) SF/HGF is a mediator between limb patterning and muscle development. Development 126:4885–4893

    PubMed  CAS  Google Scholar 

  • Schafer K, Braun T (1999) Early specification of limb muscle precursor cells by the homeobox gene Lbx1h. Nat Genet 23:213–216

    Article  PubMed  CAS  Google Scholar 

  • Scharner J, Zammit PS (2011) The muscle satellite cell at 50: the formative years. Skelet Muscle 1:28

    Article  PubMed  Google Scholar 

  • Schienda J, Engleka KA, Jun S, Hansen MS, Epstein JA, Tabin CJ, Kunkel LM, Kardon G (2006) Somitic origin of limb muscle satellite and side population cells. Proc Natl Acad Sci USA 103:945–950

    Article  PubMed  CAS  Google Scholar 

  • Shefer G, Van de Mark DP, Richardson JB, Yablonka-Reuveni Z (2006) Satellite-cell pool size does matter: defining the myogenic potency of aging skeletal muscle. Dev Biol 294:50–66

    Article  PubMed  CAS  Google Scholar 

  • Shefer G, Rauner G, Yablonka-Reuveni Z, Benayahu D (2010) Reduced satellite cell numbers and myogenic capacity in aging can be alleviated by endurance exercise. PLoS ONE 5:e13307

    Article  PubMed  CAS  Google Scholar 

  • Shih HP, Gross MK, Kioussi C (2007) Cranial muscle defects of Pitx2 mutants result from specification defects in the first branchial arch. Proc Natl Acad Sci USA 104:5907–5912

    Article  PubMed  CAS  Google Scholar 

  • Sicinski P, Geng Y, Ryder-Cook AS, Barnard EA, Darlison MG, Barnard PJ (1989) The molecular basis of muscular dystrophy in the mdx mouse: a point mutation. Science 244:1578–1580

    Article  PubMed  CAS  Google Scholar 

  • Siegel AL, Atchison K, Fisher KE, Davis GE, Cornelison DD (2009) 3D timelapse analysis of muscle satellite cell motility. Stem Cells 27:2527–2538

    Article  PubMed  CAS  Google Scholar 

  • Simionescu A, Pavlath GK (2011) Molecular mechanisms of myoblast fusion across species. Adv Exp Med Biol 713:113–135

    Article  PubMed  CAS  Google Scholar 

  • Skuk D, Tremblay JP (2011) Intramuscular cell transplantation as a potential treatment of myopathies: clinical and preclinical relevant data. Expert Opin Biol Ther 11:359–374

    Article  PubMed  Google Scholar 

  • Smith HK, Merry TL (2011) Voluntary resistance wheel exercise during post-natal growth in rats enhances skeletal muscle satellite cell and myonuclear content at adulthood. Acta Physiol (Oxf) 204:393–402

    Article  CAS  Google Scholar 

  • Stark DA, Karvas RM, Siegel AL, Cornelison DD (2011) Eph/ephrin interactions modulate muscle satellite cell motility and patterning. Development 138:5279–5289

    Article  PubMed  CAS  Google Scholar 

  • Sweetman D, Rathjen T, Jefferson M, Wheeler G, Smith TG, Wheeler GN, Munsterberg A, Dalmay T (2006) FGF-4 signaling is involved in mir-206 expression in developing somites of chicken embryos. Dev Dyn 235:2185–2191

    Article  PubMed  CAS  Google Scholar 

  • Tajbakhsh S, Rocancourt D, Cossu G, Buckingham M (1997) Redefining the genetic hierarchies controlling skeletal myogenesis: Pax-3 and Myf-5 act upstream of MyoD. Cell 89:127–138

    Article  PubMed  CAS  Google Scholar 

  • Theis S, Patel K, Valasek P, Otto A, Pu Q, Harel I, Tzahor E, Tajbakhsh S, Christ B, Huang R (2010) The occipital lateral plate mesoderm is a novel source for vertebrate neck musculature. Development 137:2961–2971

    Article  PubMed  CAS  Google Scholar 

  • Tirosh-Finkel L, Elhanany H, Rinon A, Tzahor E (2006) Mesoderm progenitor cells of common origin contribute to the head musculature and the cardiac outflow tract. Development 133:1943–1953

    Article  PubMed  CAS  Google Scholar 

  • Torrente Y, Bordignon C, Bottinelli R, Cossu G (2006) Mesoangioblast stem cells ameliorate muscle function in dystrophic dogs. Nature 444:574–579

    Article  PubMed  CAS  Google Scholar 

  • Tremblay P, Gruss P (1994) Pax: genes for mice and men. Pharmacol Ther 61:205–226

    Article  PubMed  CAS  Google Scholar 

  • Tzahor E (2009) Heart and craniofacial muscle development: a new developmental theme of distinct myogenic fields. Dev Biol 327:273–279

    Article  PubMed  CAS  Google Scholar 

  • Tzahor E, Kempf H, Mootoosamy RC, Poon AC, Abzhanov A, Tabin CJ, Dietrich S, Lassar AB (2003) Antagonists of Wnt and BMP signaling promote the formation of vertebrate head muscle. Genes Dev 17:3087–3099

    Article  PubMed  CAS  Google Scholar 

  • Valasek P, Evans DJ, Maina F, Grim M, Patel K (2005) A dual fate of the hindlimb muscle mass: cloacal/perineal musculature develops from leg muscle cells. Development 132:447–458

    Article  PubMed  CAS  Google Scholar 

  • van Rooij E, Sutherland LB, Qi X, Richardson JA, Hill J, Olson EN (2007) Control of stress-dependent cardiac growth and gene expression by a microRNA. Science 316:575–579

    Article  PubMed  CAS  Google Scholar 

  • van Rooij E, Quiat D, Johnson BA, Sutherland LB, Qi X, Richardson JA, Kelm RJ Jr, Olson EN (2009) A family of microRNAs encoded by myosin genes governs myosin expression and muscle performance. Dev Cell 17:662–673

    Article  PubMed  CAS  Google Scholar 

  • Vasyutina E, Birchmeier C (2006) The development of migrating muscle precursor cells. Anat Embryol (Berl) 211(1):37–41

    Google Scholar 

  • Vasyutina E, Stebler J, Brand-Saberi B, Schulz S, Raz E, Birchmeier C (2005) CXCR4 and Gab1 cooperate to control the development of migrating muscle progenitor cells. Genes Dev 19:2187–2198

    Article  PubMed  CAS  Google Scholar 

  • Walker BE (1963) The origin of myoblasts and the problem of dedifferentiation. Exp Cell Res 30:80–92

    Article  PubMed  CAS  Google Scholar 

  • Weintraub H, Davis R, Tapscott S, Thayer M, Krause M, Benezra R, Blackwell TK, Turner D, Rupp R, Hollenberg S et al (1991) The myoD gene family: nodal point during specification of the muscle cell lineage. Science 251:761–766

    Article  PubMed  CAS  Google Scholar 

  • Williams BA, Ordahl CP (1994) Pax-3 expression in segmental mesoderm marks early stages in myogenic cell specification. Development 120:785–796

    PubMed  CAS  Google Scholar 

  • Wilting J, Brand-Saberi B, Huang R, Zhi Q, Kontges G, Ordahl CP, Christ B (1995) Angiogenic potential of the avian somite. Dev Dyn 202:165–171

    Article  PubMed  CAS  Google Scholar 

  • Wilting J, Papoutsi M, Schneider M, Christ B (2000) The lymphatic endothelium of the avian wing is of somitic origin. Dev Dyn 217:271–278

    Article  PubMed  CAS  Google Scholar 

  • Wilting J, Papoutsi M, Othman-Hassan K, Rodriguez-Niedenfuhr M, Prols F, Tomarev SI, Eichmann A (2001) Development of the avian lymphatic system. Microsc Res Tech 55:81–91

    Article  PubMed  CAS  Google Scholar 

  • Wood MJ, Gait MJ, Yin H (2010) RNA-targeted splice-correction therapy for neuromuscular disease. Brain 133:957–972

    Article  PubMed  Google Scholar 

  • Yusuf F, Brand-Saberi B (2006) The eventful somite: patterning, fate determination and cell division in the somite. Anat Embryol (Berl) 211(1):21–30

    Google Scholar 

  • Yusuf F, Rehimi R, Dai F, Brand-Saberi B (2005) Expression of chemokine receptor CXCR4 during chick embryo development. Anat Embryol (Berl) 210:35–41

    Article  CAS  Google Scholar 

  • Yusuf F, Rehimi R, Morosan-Puopolo G, Dai F, Zhang X, Brand-Saberi B (2006) Inhibitors of CXCR4 affect the migration and fate of CXCR4+ progenitors in the developing limb of chick embryos. Dev Dyn 235:3007–3015

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors’ special thanks are due to Ms Helga Schulze for preparing the artwork of this article. We furthermore like to thank Dr. Mohammed Abdelsabour Khalaf for his valuable help concerning literature assembly. Part of the original work reviewed here has been supported by the DFG (Br 957/5-1, 5-2, 5-3), the Eu’s Sixth Framework Network of Excellence MYORES (511978), and FoRUM grant (6308100907) awarded to Beate Brand-Saberi, as well as by FoRUM grant F732N-2011 awarded to Faisal Yusuf.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faisal Yusuf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yusuf, F., Brand-Saberi, B. Myogenesis and muscle regeneration. Histochem Cell Biol 138, 187–199 (2012). https://doi.org/10.1007/s00418-012-0972-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-012-0972-x

Keywords

Navigation