Skip to main content

Advertisement

Log in

Roles of human β-defensins in innate immune defense at the ocular surface: arming and alarming corneal and conjunctival epithelial cells

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Human β-defensins are cationic peptides produced by epithelial cells that have been proposed to be an important component of immune function at mucosal surfaces. In this study, the expression and inducibility of β-defensins at the ocular surface were investigated in vitro and in vivo. Expression of human β-defensins (hBD) was determined by RT-PCR and immunohistochemistry in tissues of the ocular surface and lacrimal apparatus. Cultured corneal and conjunctival epithelial cells were stimulated with proinflammatory cytokines and supernatants of different ocular pathogens. Real-time PCR and ELISA experiments were performed to study the effect on the inducibility of hBD2 and 3. Expression and inducibility of mouse β-defensins-2, -3 and -4 (mBD2–4) were tested in a mouse ocular surface scratch model with and without treatment of supernatants of a clinical Staphylococcus aureus (SA) isolate by means of immunohistochemistry. Here we show that hBD1, -2, -3 and -4 are constitutively expressed in conjunctival epithelial cells and also partly in cornea. Healthy tissues of the ocular surface, lacrimal apparatus and human tears contain measurable amounts of hBD2 and -3, with highest concentrations in cornea and much lower concentrations in all other tissues, especially tears, suggesting intraepithelial storage of β-defensins. Exposure of cultured human corneal and conjunctival epithelial cells to proinflammatory cytokines and supernatants of various bacteria revealed that IL-1β is a very strong inductor of hBD2 and Staphylococcus aureus increases both hBD2 and hBD3 production in corneal and conjunctival epithelial cells. A murine corneal scratch model demonstrated that β-defensins are only induced if microbial products within the tear film come into contact with a defective epithelium. Our finding suggests that the tear film per se contains so much antimicrobial substances that epithelial induction of β-defensins occurs only as a result of ocular surface damage. These findings widen our knowledge of the distribution, amount and inducibility of β-defensins at the ocular surface and lacrimal apparatus and show how β-defensins are regulated specifically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

HCE:

Human corneal epithelial cells

HCjE:

Human conjunctival epithelial cells

IL:

Interleukin

TNF:

Tumor necrosis factor

hBD1:

Human β-defensin 1

hBD2:

Human β-defensin 2

hBD3:

Human β-defensin 3

hBD4:

Human β-defensin 4

mBD2:

Mouse β-defensin 2

mBD3:

Mouse β-defensin 3

mBD4:

Mouse β-defensin 4

References

  • Aarbiou J, Ertmann M, van Wetering S, van Noort P, Rook D, Rabe KF, Litvinov SV, van Krieken JH, de Boer WI, Hiemstra PS (2002) Human neutrophil defensins induce lung epithelial cell proliferation in vitro. J Leukoc Biol 72:167–174

    CAS  PubMed  Google Scholar 

  • Aarbiou J, Verhoosel RM, Van Wetering S, De Boer WI, Van Krieken JH, Litvinov SV, Rabe KF, Hiemstra PS (2004) Neutrophil defensins enhance lung epithelial wound closure and mucin gene expression in vitro. Am J Respir Cell Mol Biol 30:193–201

    Article  CAS  PubMed  Google Scholar 

  • Abedin A, Mohammed I, Hopkinson A, Dua HS (2008) A novel antimicrobial peptide on the ocular surface shows decreased expression in inflammation and infection. Invest Ophthalmol Vis Sci 49:28–33

    Article  PubMed  Google Scholar 

  • Araki-Sasaki K, Ohashi Y, Sasabe T, Hayashi K, Watanabe H, Tano Y, Handa H (1995) An SV40-immortalized human corneal epithelial cell line and its characterization. Invest Ophthalmol Vis Sci 36:614–621

    CAS  PubMed  Google Scholar 

  • Bals R, Goldman MJ, Wilson JM (1998a) Mouse beta-defensin 1 is a salt-sensitive antimicrobial peptide present in epithelia of the lung and urogenital tract. Infect Immun 66:1225–1232

    CAS  PubMed  Google Scholar 

  • Bals R, Wang X, Wu Z, Freeman T, Bafna V, Zasloff M, Wilson JM (1998b) Human beta-defensin 2 is a salt-sensitive peptide antibiotic expressed in human lung. J Clin Invest 102:874–880

    Article  CAS  PubMed  Google Scholar 

  • Batoni G, Maisetta G, Esin S, Campa M (2006) Human beta-defensin-3: a promising antimicrobial peptide. Mini Rev Med Chem 6:1063–1073

    Article  CAS  PubMed  Google Scholar 

  • Beisswenger C, Bals R (2005) Functions of antimicrobial peptides in host defense and immunity. Curr Protein Pept Sci 6:255–264

    Article  CAS  PubMed  Google Scholar 

  • Bowdish DM, Davidson DJ, Hancock RE (2006) Immunomodulatory properties of defensins and cathelicidins. Curr Top Microbiol Immunol 306:27–66

    Article  CAS  PubMed  Google Scholar 

  • Burd RS, Furrer JL, Sullivan J, Smith AL (2002) Murine beta-defensin-3 is an inducible peptide with limited tissue expression and broad-spectrum antimicrobial activity. Shock 18:461–464

    Article  PubMed  Google Scholar 

  • Candille SI, Kaelin CB, Cattanach BM, Yu B, Thompson DA, Nix MA, Kerns JA, Schmutz SM, Millhauser GL, Barsh GS (2007) A -defensin mutation causes black coat color in domestic dogs. Science 318:1418–1423

    Article  CAS  PubMed  Google Scholar 

  • Chauhan SK, El Annan J, Ecoiffier T, Goyal S, Zhang Q, Saban DR, Dana R (2009) Autoimmunity in dry eye is due to resistance of Th17 to Treg suppression. J Immunol 182:1247–1252

    CAS  PubMed  Google Scholar 

  • Diebold Y, Calonge M, Enriquez de Salamanca A, Callejo S, Corrales RM, Saez V, Siemasko KF, Stern ME (2003) Characterization of a spontaneously immortalized cell line (IOBA-NHC) from normal human conjunctiva. Invest Ophthalmol Vis Sci 44:4263–4274

    Article  PubMed  Google Scholar 

  • Ganz T, Selsted ME, Szklarek D, Harwig SS, Daher K, Bainton DF, Lehrer RI (1985) Defensins. Natural peptide antibiotics of human neutrophils. J Clin Invest 76:1427–1435

    Article  CAS  PubMed  Google Scholar 

  • Garcia JR, Jaumann F, Schulz S, Krause A, Rodriguez-Jimenez J, Forssmann U, Adermann K, Klüver E, Vogelmeier C, Becker D, Hedrich R, Forssmann W-G, Bals R (2001) Identification of a novel, multifunctional ß-defensin (human ß-defensin 3) with specific antimicrobial activity. Cell Tissue Res 306:257–264

    Article  CAS  PubMed  Google Scholar 

  • Grigat J, Soruri A, Forssmann U, Riggert J, Zwirner J (2007) Chemoattraction of macrophages, T lymphocytes, and mast cells is evolutionarily conserved within the human alpha-defensin family. J Immunol 179:3958–3965

    CAS  PubMed  Google Scholar 

  • Harder J, Bartels J, Christophers E, Schroder JM (2001) Isolation and characterization of human beta-defensin-3, a novel human inducible peptide antibiotic. J Biol Chem 276:5707–5713

    Article  CAS  PubMed  Google Scholar 

  • Hattenbach LO, Gumbel H, Kippenberger S (1998) Identification of beta-defensins in human conjunctiva. Antimicrob Agents Chemother 42:3332

    CAS  PubMed  Google Scholar 

  • Haynes RJ, Tighe PJ, Dua HS (1998) Innate defence of the eye by antimicrobial defensin peptides. Lancet 352:451–452

    Article  CAS  PubMed  Google Scholar 

  • Hinrichsen K, Podschun R, Schubert S, Schroder JM, Harder J, Proksch E (2008) Mouse beta-defensin-14, an antimicrobial ortholog of human beta-defensin-3. Antimicrob Agents Chemother 52:1876–1879

    Article  CAS  PubMed  Google Scholar 

  • Huang LC, Petkova TD, Reins RY, Proske RJ, McDermott AM (2006) Multifunctional roles of human cathelicidin (LL-37) at the ocular surface. Invest Ophthalmol Vis Sci 47:2369–2380

    Article  PubMed  Google Scholar 

  • Huang LC, Jean D, Proske RJ, Reins RY, McDermott AM (2007) Ocular surface expression and in vitro activity of antimicrobial peptides. Curr Eye Res 32:595–609

    Article  CAS  PubMed  Google Scholar 

  • Jones DE, Bevins CL (1992) Paneth cells of the human small intestine express an antimicrobial peptide gene. J Biol Chem 267:23216–23225

    CAS  PubMed  Google Scholar 

  • Jones DE, Bevins CL (1993) Defensin-6 mRNA in human Paneth cells: implications for antimicrobial peptides in host defense of the human bowel. FEBS Lett 315:187–192

    Article  CAS  PubMed  Google Scholar 

  • Kawasaki S, Kawamoto S, Yokoi N, Connon C, Minesaki Y, Kinoshita S, Okubo K (2003) Up-regulated gene expression in the conjunctival epithelium of patients with Sjogren’s syndrome. Exp Eye Res 77:17–26

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Zhang J, Yu F-SX (2004) innate immune response of corneal epithelial cells to Staphylococcus aureus infection: role of peptidoglycan in stimulating proinflammatory cytokine secretion. Invest Ophthalmol Vis Sci 45:3513–3522

    Article  PubMed  Google Scholar 

  • Kumar A, Zhang J, Yu FS (2006) Toll-like receptor 2-mediated expression of beta-defensin-2 in human corneal epithelial cells. Microbes Infect 8:380–389

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Yin J, Zhang J, Yu F-SX (2007) Modulation of corneal epithelial innate immune response to Pseudomonas Infection by flagellin pretreatment. Invest Ophthalmol Vis Sci 48:4664–4670

    Article  PubMed  Google Scholar 

  • Lehmann OJ, Hussain IR, Watt PJ (2000) Investigation of beta defensin gene expression in the ocular anterior segment by semiquantitative RT-PCR. Br J Ophthalmol 84:523–526

    Article  CAS  PubMed  Google Scholar 

  • Li J, Raghunath M, Tan D, Lareu RR, Chen Z, Beuerman RW (2006) Defensins HNP1 and HBD2 stimulation of wound-associated responses in human conjunctival fibroblasts. Invest Ophthalmol Vis Sci 47:3811–3819

    Article  PubMed  Google Scholar 

  • Li Q, Kumar A, Gui JF, Yu FS (2008) Staphylococcus aureus lipoproteins trigger human corneal epithelial innate response through toll-like receptor-2. Microb Pathog 44:426–434

    Article  CAS  PubMed  Google Scholar 

  • Li J, Zhu HY, Beuerman RW (2009) Stimulation of specific cytokines in human conjunctival epithelial cells by defensins HNP1, HBD2, and HBD3. Invest Ophthalmol Vis Sci 50:644–653

    Article  PubMed  Google Scholar 

  • Liu S, Zhou L, Li J, Suresh A, Verma C, Foo YH, Yap EP, Tan DT, Beuerman RW (2008) Linear analogues of human beta-defensin 3: concepts for design of antimicrobial peptides with reduced cytotoxicity to mammalian cells. Chembiochem 9:964–973

    Article  CAS  PubMed  Google Scholar 

  • McDermott AM (2001) Human beta-defensin 2 is up-regulated during re-epithelialization of the cornea. Curr Eye Res 22:64–67

    Article  CAS  PubMed  Google Scholar 

  • McDermott AM (2004) Defensins and other antimicrobial peptides at the ocular surface. Ocul Surf 2:229–247

    PubMed  Google Scholar 

  • McDermott AM (2008) The role of antimicrobial peptides at the ocular surface. Ophthalmic Res 41:60–75

    PubMed  Google Scholar 

  • McDermott AM, Redfern RL, Zhang B, Pei Y, Huang L, Proske RJ (2003) Defensin expression by the cornea: multiple signalling pathways mediate IL-1beta stimulation of hBD-2 expression by human corneal epithelial cells. Invest Ophthalmol Vis Sci 44:1859–1865

    Article  PubMed  Google Scholar 

  • McIntosh RS, Cade JE, Al-Abed M, Shanmuganathan V, Gupta R, Bhan A, Tighe PJ, Dua HS (2005) The spectrum of antimicrobial peptide expression at the ocular surface. Invest Ophthalmol Vis Sci 46:1379–1385

    Article  PubMed  Google Scholar 

  • McNamara N, Van R, Tuchin OS, Fleiszig SM (1999) Ocular surface epithelia express mRNA for human beta defensin-2. Exp Eye Res 69:483–490

    Article  CAS  PubMed  Google Scholar 

  • Murphy CJ, Foster BA, Mannis MJ, Selsted ME, Reid TW (1993) Defensins are mitogenic for epithelial cells and fibroblasts. J Cell Physiol 155:408–413

    Article  CAS  PubMed  Google Scholar 

  • Narayanan S, Miller WL, McDermott AM (2003) Expression of human beta-defensins in conjunctival epithelium: relevance to dry eye disease. Invest Ophthalmol Vis Sci 44:3795–3801

    Article  PubMed  Google Scholar 

  • Nguyen TX, Cole AM, Lehrer RI (2003) Evolution of primate theta-defensins: a serpentine path to a sweet tooth. Peptides 24:1647–1654

    Article  CAS  PubMed  Google Scholar 

  • Niyonsaba F, Ogawa H, Nagaoka I (2004) Human beta-defensin-2 functions as a chemotactic agent for tumour necrosis factor-alpha-treated human neutrophils. Immunology 111:273–281

    Article  CAS  PubMed  Google Scholar 

  • Niyonsaba F, Ushio H, Nakano N, Ng W, Sayama K, Hashimoto K, Nagaoka I, Okumura K, Ogawa H (2007) Antimicrobial peptides human beta-defensins stimulate epidermal keratinocyte migration, proliferation and production of proinflammatory cytokines and chemokines. J Invest Dermatol 127:594–604

    Article  CAS  PubMed  Google Scholar 

  • Nomura I, Goleva E, Howell MD, Hamid QA, Ong PY, Hall CF, Darst MA, Gao B, Boguniewicz M, Travers JB, Leung DY (2003) Cytokine milieu of atopic dermatitis, as compared to psoriasis, skin prevents induction of innate immune response genes. J Immunol 171:3262–3269

    CAS  PubMed  Google Scholar 

  • Oono T, Shirafuji Y, Huh WK, Akiyama H, Iwatsuki K (2002) Effects of human neutrophil peptide-1 on the expression of interstitial collagenase and type I collagen in human dermal fibroblasts. Arch Dermatol Res 294:185–189

    Article  CAS  PubMed  Google Scholar 

  • Oren A, Ganz T, Liu L, Meerloo T (2003) In human epidermis, beta-defensin 2 is packaged in lamellar bodies. Exp Mol Pathol 74:180–182

    Article  CAS  PubMed  Google Scholar 

  • Paulsen FP, Pufe T, Schaudig U, Held-Feindt J, Lehmann J, Schroder JM, Tillmann BN (2001) Detection of natural peptide antibiotics in human nasolacrimal ducts. Invest Ophthalmol Vis Sci 42:2157–2163

    CAS  PubMed  Google Scholar 

  • Paulsen F, Varoga D, Steven P, Pufe T (2005) Antimicrobial peptides at the ocular surface. In: Zierhut M, Stern ME, Sullivan DA (eds) Immunology of lacrimal gland and tear film. Taylor & Francis, London, pp 97–104

    Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45

    Article  CAS  PubMed  Google Scholar 

  • Qu XD, Lehrer RI (1998) Secretory phospholipase A2 is the principal bactericide for staphylococci and other gram-positive bacteria in human tears. Infect Immun 66:2791–2797

    CAS  PubMed  Google Scholar 

  • Quayle AJ, Porter EM, Nussbaum AA, Wang YM, Brabec C, Yip KP, Mok SC (1998) Gene expression, immunolocalization, and secretion of human defensin-5 in human female reproductive tract. Am J Pathol 152:1247–1258

    CAS  PubMed  Google Scholar 

  • Schneider JJ, Unholzer A, Schaller M, Schafer-Korting M, Korting HC (2005) Human defensins. J Mol Med 83:587–595

    Article  CAS  PubMed  Google Scholar 

  • Schutte BC, Mitros JP, Bartlett JA, Walters JD, Jia HP, Welsh MJ, Casavant TL, McCray PB Jr (2002) Discovery of five conserved beta -defensin gene clusters using a computational search strategy. Proc Natl Acad Sci USA 99:2129–2133

    Article  CAS  PubMed  Google Scholar 

  • Semple CA, Gautier P, Taylor K, Dorin JR (2006) The changing of the guard: molecular diversity and rapid evolution of beta-defensins. Mol Divers 10:575–584

    Article  CAS  PubMed  Google Scholar 

  • Shin JS, Kim CW, Kwon YS, Kim JC (2004) Human beta-defensin 2 is induced by interleukin-1 beta in the corneal epithelial cells. Exp Mol Med 36:204–210

    CAS  PubMed  Google Scholar 

  • Varoga D, Pufe T, Harder J, Meyer-Hoffert U, Mentlein R, Schroder JM, Petersen WJ, Tillmann BN, Proksch E, Goldring MB, Paulsen FP (2004) Production of endogenous antibiotics in articular cartilage. Arthritis Rheum 50:3526–3534

    Article  CAS  PubMed  Google Scholar 

  • Varoga D, Pufe T, Mentlein R, Kohrs S, Grohmann S, Tillmann B, Hassenpflug J, Paulsen F (2005) Expression and regulation of antimicrobial peptides in articular joints. Ann Anat 187:499–508

    Article  CAS  PubMed  Google Scholar 

  • Wilde CG, Griffith JE, Marra MN, Snable JL, Scott RW (1989) Purification and characterization of human neutrophil peptide 4, a novel member of the defensin family. J Biol Chem 264:11200–11203

    CAS  PubMed  Google Scholar 

  • Wu M, McClellan SA, Barrett RP, Zhang Y, Hazlett LD (2009) Beta-defensins 2 and 3 together promote resistance to Pseudomonas aeruginosa keratitis. J Immunol 183:8054–8060

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi Y, Nagase T, Makita R, Fukuhara S, Tomita T, Tominaga T, Kurihara H, Ouchi Y (2002) Identification of multiple novel epididymis-specific beta-defensin isoforms in humans and mice. J Immunol 169:2516–2523

    Google Scholar 

  • Yamaguchi Y, Nagase T, Tomita T, Nakamura K, Fukuhara S, Amano T, Yamamoto H, Ide Y, Suzuki M, Teramoto S, Asano T, Kangawa K, Nakagata N, Ouchi Y, Kurihara H (2007) Beta-defensin overexpression induces progressive muscle degeneration in mice. Am J Physiol Cell Physiol 292:C2141–C2149

    Article  CAS  PubMed  Google Scholar 

  • Yanagi S, Ashitani J, Ishimoto H, Date Y, Mukae H, Chino N, Nakazato M (2005) Isolation of human beta- defensin-4 in lung tissue and its increase in lower respiratory tract infection. Respir Res 6:130

    Article  PubMed  Google Scholar 

  • Yang D, Chen Q, Chertov O, Oppenheim JJ (2000) Human neutrophil defensins selectively chemoattract naive T and immature dendritic cells. J Leukoc Biol 68:9–14

    CAS  PubMed  Google Scholar 

  • Zaiou M (2007) Multifunctional antimicrobial peptides: therapeutic targets in several human diseases. J Mol Med 85:317–329

    Article  CAS  PubMed  Google Scholar 

  • Zhou L, Huang LQ, Beuerman RW, Grigg ME, Li SF, Chew FT, Ang L, Stern ME, Tan D (2004) Proteomic analysis of human tears: defensin expression after ocular surface surgery. J Proteome Res 3:410–416

    Article  CAS  PubMed  Google Scholar 

  • Zhou L, Beuerman RW, Huang L, Barathi A, Foo YH, Li SF, Chew FT, Tan D (2007) Proteomic analysis of rabbit tear fluid: defensin levels after an experimental corneal wound are correlated to wound closure. Proteomics 7:3194–3206

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Ute Beyer, Stephanie Beilecke, Susann Möschter, Karin Stengel and Regine Worm for excellent technical assistance and Dr. Bernhard Nölle (Department of Ophthalmology, Christian Albrecht University of Kiel) for providing us with clinical samples. Moreover, we are grateful to Deike Varoga (Department of Trauma Surgery, University Hospital of Schleswig-Holstein, Campus Kiel, Germany) for helpful advice and discussion with regard to the corneal scratch model as well as Ute Schulze and Sylvia Dyczek for their help with the translation. This work was supported by the Deutsche Forschungsgemeinschaft (DFG)–program grants PA 738/9-1 and PA 738/9-2, BMBF–Wilhelm Roux Program, Halle, Germany–program grants FKZ 09/16, 14/25, and 16/35, as well as Sicca Forschungsförderung of the professional Association of German Ophthalmologists.

Conflict of interest statement

The authors have no financial conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fabian Garreis or Friedrich P. Paulsen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garreis, F., Schlorf, T., Worlitzsch, D. et al. Roles of human β-defensins in innate immune defense at the ocular surface: arming and alarming corneal and conjunctival epithelial cells. Histochem Cell Biol 134, 59–73 (2010). https://doi.org/10.1007/s00418-010-0713-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-010-0713-y

Keywords

Navigation