Skip to main content
Log in

Protein kinase C isoforms in the enteric nervous system

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

C kinases (PKCs) are a family of enzymes essential for the transduction of signals in a diverse range of cell types, including neurons. The different isoforms vary in their activation requirements. Therefore, cell-specific expression of different isoforms has implications for PKC-mediated control of organ function. This study has investigated the types and distributions of PKC isoforms in the small intestine of the guinea-pig, with particular emphasis on their localisation in myenteric neurons, using immunohistochemistry and western blotting techniques. Three PKC isoforms, γ, η and θ, were detected in the calbindin-immunoreactive subset of intrinsic primary afferent neurons, but not in other myenteric neurons. Both γ and θ immunoreactivities were also located in interstitial cells of Cajal. In contrast to these isoforms, immunoreactivity for PKCs λ and ε was present in all myenteric neurons of the ileum. PKCα immunoreactivity was detected primarily in the glial network, as shown through double labelling with antibodies to the glial filament protein, S100b. Myenteric neurons were also weakly immunoreactive for this isoform. PKCδ immunoreactivity was very highly expressed in smooth muscle, but was largely absent from neurons. Immunoreactivity for RACK1, a binding protein for PKCβ, was detected in both calbindin-immunoreactive neurons and in smooth muscle cells. This study indicates a selective distribution of PKC isoforms to specific cell types. Isoform-specific activity of these enzymes could provide a means through which targeted modulation of intestinal function is achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A–H.
Fig. 2A–J.
Fig. 3A–F.
Fig. 4.

Similar content being viewed by others

References

  • Ali I, Sarna SK (2002) Selective modulation of PKC isozymes by inflammation in canine colonic circular muscle cells. Gastroenterology 122:483–494

    CAS  PubMed  Google Scholar 

  • Behn-Krappa A, Newton AC (1999) The hydrophobic phosphorylation motif of conventional protein kinase C is regulated by autophosphorylation. Curr Biol 9:728–737

    Article  CAS  PubMed  Google Scholar 

  • Belai A, Dale MM, Burnstock G (1990) Enhancement of A23187-induced release of enteric vasoactive intestinal polypeptide by phorbol 12,13-dibutyrate. Eur J Pharmacol 177:103–105

    Article  CAS  PubMed  Google Scholar 

  • Bertrand PP, Galligan JJ (1995) Signal-transduction pathways causing slow synaptic excitation in guinea pig myenteric AH neurons. Am J Physiol 269:G710–G720

    CAS  PubMed  Google Scholar 

  • Blitterswijk WJ van, Houssa B (2000) Properties and functions of diacylglycerol kinases. Cell Signal 12:595–605

    Article  PubMed  Google Scholar 

  • Brändlin I, Hübner S, Eiseler T, Martinez-Moya M, Horschinek A, Hausser A, Link G, Rupp S, Storz P, Pfizenmaier K, Johannes F-J (2002) Protein kinase C (PKC) η-mediated PKCμ activation modulates ERK and JNK signal pathways. J Biol Chem 277:6490–6496

    Article  PubMed  Google Scholar 

  • Bush TG (2002) Enteric glial cells. An upstream target for induction of necrotizing enterocolitis and Crohn's disease? Bioessays 24:130–140

  • Chiocchetti R, Poole DP, Kimura H, Aimi Y, Robbins HL, Castelucci P, Furness JB (2003) Evidence that two forms of choline acetyltransferase are differentially expressed in subclasses of enteric neurons. Cell Tissue Res 311:11–22

    Article  CAS  PubMed  Google Scholar 

  • Clément-Chomienne O, Walsh MP (1996) Identification of protein kinase C isoenzymes in smooth muscle: partial purification and characterization of chicken gizzard PKCζ. Biochem Cell Biol 74:51–65

    PubMed  Google Scholar 

  • Clerc N, Gola M, Vogalis F, Furness JB (2002) Controlling the excitability of IPANs: a possible route to therapeutics. Curr Opin Pharm 2:657–664

    Article  CAS  Google Scholar 

  • Costa M, Davies P, Brody KM, Brookes SJH, Bornstein J (2002) Histochemical identification of enteric primary afferent neurons. Proc Aust Neurosci Soc 13:53

    Google Scholar 

  • Csukai M, Chen CH, De Matteis MA, Mochly-Rosen D (1997) The coatomer protein β′-COP, a selective binding protein RACK for protein kinase Cε. J Biol Chem 272:29200–29206

    Article  CAS  PubMed  Google Scholar 

  • Dammeier S, Lovric J, Eulitz M, Kolch W, Mushinski JF, Mischak H (2000) Identification of the smooth muscle-specific protein, sm22, as a novel protein kinase C substrate using two-dimensional gel electrophoresis and mass spectrometry. Electrophoresis 21:2443–2453

    Article  CAS  PubMed  Google Scholar 

  • Dempsey EC, Newton AC, Mochly-Rosen D, Fields AP, Reyland ME, Insel PA, Messing RO (2000) Protein kinase C isozymes and the regulation of diverse cell responses. Am J Physiol 279:L429–L438

    CAS  Google Scholar 

  • Dietrich C, Kilbinger H (1996) 5-HT1A receptor-mediated inhibition of acetylcholine release from guinea pig myenteric plexus: potential mechanisms. Neuropharmacology 35:483–488

    Article  CAS  PubMed  Google Scholar 

  • Dorn GW II, Mochly-Rosen D (2002) Intracellular transport mechanisms of signal transducers. Annu Rev Physiol 64:407–429

    Article  CAS  PubMed  Google Scholar 

  • Epperson A, Hatton WJ, Callaghan B, Doherty P, Walker RL, Sanders KM, Ward SM, Horowitz B (2000) Molecular markers expressed in cultured and freshly isolated interstitial cells of Cajal. Am J Physiol 279:C529–C539

    CAS  Google Scholar 

  • Furness JB (2000) Types of neurons in the enteric nervous system. J Autonom Nerv Syst 81:87–96

    CAS  Google Scholar 

  • Furness JB, Costa M, Walsh JH (1981) Evidence for and significance of the projection of VIP neurons from the myenteric plexus to the taenia coli in the guinea-pig. Gastroenterology 80:1557–1561

    CAS  PubMed  Google Scholar 

  • Furness JB, Keast JR, Pompolo S, Bornstein JC, Costa M, Emson PC, Lawson DEM (1988) Immunohistochemical evidence for the presence of calcium binding proteins in enteric neurons. Cell Tissue Res 252:79–87

    CAS  PubMed  Google Scholar 

  • Furness JB, Pompolo S, Murphy R, Giraud A (1989) Projections of neurons with neuromedin U-like immunoreactivity in the small intestine of the guinea-pig. Cell Tissue Res 257:415–422

    CAS  PubMed  Google Scholar 

  • Hall SK, Armstrong DL (2000) Conditional and unconditional inhibition of calcium-activated potassium channels by reversible protein phosphorylation. J Biol Chem 275:3749–3754

    PubMed  Google Scholar 

  • Hanani M, Lasser Ross N (1997) Activity-dependent changes in intracellular calcium in myenteric neurons. Am J Physiol 273:G1359–G1363

    CAS  PubMed  Google Scholar 

  • Hayashi A, Seki N, Hattori A, Kozuma S, Saito T (1999) PKCv, a new member of the protein kinase C family, composes a fourth subfamily with PKCμ. Biochim Biophys Acta 1450:99–106

    Article  CAS  PubMed  Google Scholar 

  • Hirst GDS, Johnson SM, Helden DF van (1985) The slow calcium-dependent potassium current in a myenteric neurone of the guinea-pig ileum. J Physiol 361:315–337

    CAS  PubMed  Google Scholar 

  • Houssa B, Schaap D, Wal J van der, Goto K, Kondo H, Yamakawa A, Shibata M, Takenawa T, Blitterswijk WJ van (1997) Cloning of a novel human diacylglycerol kinase (DGKθ) containing three cysteine-rich domains, a proline-rich region, and a pleckstrin homology domain with an overlapping Ras-associating domain. J Biol Chem 272:10422–10428

    Article  CAS  PubMed  Google Scholar 

  • Ikura M, Osawa M, Ames JB (2002) The role of calcium-binding proteins in the control of transcription: structure to function. Bioessays 24:625–636

    Article  CAS  Google Scholar 

  • Iyer V, Bornstein JC, Costa M, Furness JB, Takahashi Y, Iwanaga T (1988) Electrophysiology of guinea-pig myenteric neurons correlated with immunoreactivity for calcium binding proteins. J Autonom Nerv Syst 22:141–150

    Article  CAS  Google Scholar 

  • Jeitner TM, Jarvie PE, Costa M, Rostas JAP, Dunkley PR (1991) Protein phosphorylation in guinea-pig myenteric ganglia and brain: presence of calmodulin kinase II, protein kinase C and cyclic AMP kinase and characterization of major phosphoproteins. Neuroscience 40:555–569

    Article  CAS  PubMed  Google Scholar 

  • Jessen KR, Mirsky R (1983) Astrocyte-like glia in the peripheral nervous system: an immunohistochemical study of enteric glia. J Neurosci 3:2206–2218

    CAS  PubMed  Google Scholar 

  • Jiang X, Naik MU, Hrabe J, Sacktor TC (1994) Developmental expression of the protein kinase C family in rat hippocampus. Dev Brain Res 78:291–295

    Article  CAS  Google Scholar 

  • Johannes F-J, Prestle J, Eis S, Oberhagemann P, Pfizenmaier K (1994) PKCη is a novel, atypical member of the protein kinase C family. J Biol Chem 269:6140–6148

    CAS  PubMed  Google Scholar 

  • Kazanietz MG, Areces LB, Bahador A, Mischak H, Goodnight J, Mushinski JF, Blumberg PM (1993) Characterization of ligand and substrate specificity for the calcium-dependent and calcium-independent protein kinase C isozymes. Mol Pharmacol 44:298–307

    CAS  PubMed  Google Scholar 

  • Kito Y, Fukuta H, Yamamoto Y, Suzuki H (2002) Excitation of smooth muscles isolated from the guinea-pig gastric antrum in response to depolarization. J Physiol 543.1:155–167

    Google Scholar 

  • Kobayashi S, Suzuki M, Endo T, Tsuji S, Daniel EE (1986) Framework of the enteric nerve plexuses: an immunocytochemical study in the guinea pig jejunum using an antiserum to S-100 protein. Arch Histol Jpn 49:159–188

    CAS  PubMed  Google Scholar 

  • Liedtke CM, Yun CHC, Kyle N, Wang D (2002) Protein kinase Cε-dependent regulation of cystic fibrosis transmembrane regulator involves binding to a receptor for activated C kinase (RACK1) and RACK1 binding to Na+/H+ exchange regulatory factor. J Biol Chem 277:22925–22933

    Article  CAS  PubMed  Google Scholar 

  • Liu WS, Heckman CA (1998) The sevenfold way of PKC regulation. Cell Signal 10:529–542

    Article  CAS  PubMed  Google Scholar 

  • Maruyama Y, Sakai Y, Nobe K, Momose K (1999) Subcellular distribution of protein kinase C isoforms in gastric antrum smooth muscle of STZ-induced diabetic rats. Life Sci 64:1933–1940

    Article  CAS  PubMed  Google Scholar 

  • Mochly-Rosen D, Gordon AS (1998) Anchoring proteins for protein kinase C: a means for isozyme selectivity. FASEB J 12:35–42

    CAS  PubMed  Google Scholar 

  • Mochly-Rosen D, Khaner H, Lopez J, Smith BL (1991) Intracellular receptors for activated protein kinase C. J Biol Chem 266:14866–14868

    CAS  PubMed  Google Scholar 

  • Murthy KS, Grider JR, Kuemmerle JF, Makhlouf GM (2000a) Sustained muscle contraction induced by agonists, growth factors, and Ca2+ mediated by distinct PKC isozymes. Am J Physiol 279:G201–G210

    CAS  Google Scholar 

  • Murthy KS, Yee YS, Grider JR, Makhlouf GM (2000b) Phorbol-stimulated Ca2+ mobilization and contraction in dispersed intestinal smooth muscle cells. J Pharmacol Exp Ther 294:991–996

    CAS  PubMed  Google Scholar 

  • Newton AC (1997) Regulation of protein kinase C. Curr Opin Cell Biol 9:161–167

    Article  CAS  PubMed  Google Scholar 

  • Newton AC (2002) Analyzing protein kinase C activation. Methods Enzymol 345:499–506

    PubMed  Google Scholar 

  • Ni T-S, Wu S-X, Li Y-Q (2002) Co-existence of protein kinase Cγ and calcium-binding proteins in neurons of the medullary dorsal horn of the rat. Neurosignals 11:88–94

    Article  CAS  PubMed  Google Scholar 

  • Pan H, Wang HY, Friedman E, Gershon MD (1997) Mediation by protein kinases C and A of Go-linked slow responses of enteric neurons to 5-HT. J Neurosci 17:1011–1024

    CAS  PubMed  Google Scholar 

  • Ron D, Chen CH, Caldwell J, Jamieson L, Orr E, Mochly-Rosen D (1994) Cloning of an intracellular receptor for protein kinase C: a homolog of the β subunit of G proteins. Proc Natl Acad Sci U S A 91:839–843

    CAS  PubMed  Google Scholar 

  • Ron D, Jiang Z, Yao L, Vagts A, Diamond I, Gordon A (1999) Coordinated movement of RACK1 with activated βIIPKC. J Biol Chem 274:27039–27046

    Article  CAS  PubMed  Google Scholar 

  • Rugiero F, Gola M, Kunze WAA, Reynaud J-C, Furness JB, Clerc N (2002) Analysis of whole cell currents by patch clamp of guinea-pig myenteric neurones in intact ganglia. J Physiol 538:447–463

    Article  CAS  PubMed  Google Scholar 

  • Shuntoh H, Taniyama K, Tanaka C (1989) Involvement of protein kinase C in the Ca2+-dependent vesicular release of GABA from central and enteric neurons of the guinea pig. Brain Res 483:384–388

    Article  CAS  PubMed  Google Scholar 

  • Stebbins EG, Mochly-Rosen D (2001) Binding specificity for RACK1 resides in the V5 region of βII protein kinase C. J Biol Chem 276:29644–29650

    Article  CAS  PubMed  Google Scholar 

  • Sturany S, Van Lint J, Müller F, Wilda M, Hameister H, Höcker M, Brey A, Gern U, Vandenheede J, Gress T, Adler G, Seufferlein T (2001) Molecular cloning and characterization of the human protein kinase D2. J Biol Chem 276:3310–3318

    Article  CAS  PubMed  Google Scholar 

  • Tanaka C, Nishizuka Y (1994) The protein kinase C family for neuronal signaling. Annu Rev Neurosci 17:551–567

    CAS  PubMed  Google Scholar 

  • Valverde AM, Sinnett-Smith J, Van Lint J, Rozengurt E (1994) Molecular cloning and characterization of protein kinase D: a target for diacylglycerol and phorbol esters with a distinctive catalytic domain. Proc Natl Acad Sci U S A 91:8572–8576

    CAS  PubMed  Google Scholar 

  • Van der Zee EA, Bolhuis JJ, Solomonia RO, Horn G, Luiten PGM (1995) Differential distribution of protein kinase C (PKCαβ and PKCγ) isoenzyme immunoreactivity in the chick brain. Brain Res 676:41–52

    Article  PubMed  Google Scholar 

  • Van Lint J, Rykx A, Vantus T, Vandenheede JR (2002) Getting to know protein kinase D. Int J Biochem Cell Biol 34:577–581

    Article  PubMed  Google Scholar 

  • Vogalis F, Harvey JR, Furness JB (2002a) TEA- and apamin-resistant KCa channels in guinea-pig myenteric neurons: slow AHP channels. J Physiol 538:421–433

    Article  CAS  PubMed  Google Scholar 

  • Vogalis F, Harvey JR, Lohman R-J, Furness JB (2002b) Action potential afterdepolarization mediated by a Ca2+-activated cation conductance in myenteric AH-neurons. Neuroscience 115:375–393

    Article  CAS  PubMed  Google Scholar 

  • Wulf A, Schwab A (2002) Regulation of a calcium-sensitive K+ channel (cIK1) by protein kinase C. J Membr Biol 187:71–79

    Article  CAS  PubMed  Google Scholar 

  • Yarwood SJ, Steele MR, Scotland G, Houslay MD, Bolger GB (1999) The RACK1 signaling scaffold protein selectively interacts with the cAMP-specific phosphodiesterase PDE4D5 isoform. J Biol Chem 274:14909–14917

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Health and Medical Research Council of Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John B. Furness.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poole, D.P., Hunne, B., Robbins, H.L. et al. Protein kinase C isoforms in the enteric nervous system. Histochem Cell Biol 120, 51–61 (2003). https://doi.org/10.1007/s00418-003-0541-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-003-0541-4

Keywords

Navigation