Skip to main content

Advertisement

Log in

Photobiomodulation at 660 nm promotes collagen synthesis via downregulation of HIF-1α expression without photodamage in human scleral fibroblasts in vitro in a hypoxic environment

  • Basic Science
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

The increasing prevalence of myopia is a global public health issue. Because of the complexity of myopia pathogenesis, current control methods for myopia have great limitations. The aim of this study was to explore the effect of photobiomodulation (PBM) on human sclera fibroblasts (HSFs) under hypoxia, in the hope of providing new ideas for myopia prevention and control.

Methods

Hypoxic cell model was established at 0, 6, 12, and 24 h time points to simulate myopia microenvironment and explore the optimal time point. Control, hypoxia, hypoxia plus light, and normal plus light cell models were set up for the experiments, and cells were incubated for 24 or 48 h after PBM (660 nm, 5 J/cm2), followed by evaluation of hypoxia-inducible factor 1α (HIF-1α) and collagen I a1 (COL1A1) proteins using Western blotting and immunofluorescence, and photo damage was detected by CCK-8, scratch test, and flow cytometry assays. We also used transfection technology to further elucidate the regulatory mechanism.

Results

The change of target proteins is most obvious when hypoxia lasts for 24 h (p < 0.01). PBM at 660 nm increased extracellular collagen content (p < 0.001) and downregulated expression of HIF-1α (p < 0.05). This treatment did not affect the migration and proliferation of cells (p > 0.05), and effectively inhibited apoptosis under hypoxia (p < 0.0001). After overexpression of HIF-1α, the effect of PBM was attenuated (p > 0.05).

Conclusions

Photobiomodulation at 660 nm promotes collagen synthesis via downregulation of HIF-1α expression without photodamage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets supporting the conclusions of this article will be available from the corresponding author on reasonable request.

References

  1. Li FF, Zhang Y, Zhang X, Yip BHK, Tang SM, Kam KW, Young AL, Chen LJ, Tham CC, Pang CP, Yam JC (2021) Age effect on treatment responses to 0.05%, 0.025%, and 0.01% atropine: low-concentration atropine for myopia progression study. Ophthalmology 128:1180–1187. https://doi.org/10.1016/j.ophtha.2020.12.036

    Article  PubMed  Google Scholar 

  2. Rada JA, Shelton S, Norton TT (2006) The sclera and myopia. Exp Eye Res 82:185–200. https://doi.org/10.1016/j.exer.2005.08.009

    Article  CAS  PubMed  Google Scholar 

  3. Wu H, Chen W, Zhao F et al (2018) Scleral hypoxia is a target for myopia control. Proc Natl Acad Sci U S A 115:E7091-e7100. https://doi.org/10.1073/pnas.1721443115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Geneva II (2016) Photobiomodulation for the treatment of retinal diseases: a review. Int J Ophthalmol 9:145–52. https://doi.org/10.18240/ijo.2016.01.24

  5. Mester E, Szende B, Gärtner P (1968) The effect of laser beams on the growth of hair in mice. Radiobiol Radiother (Berl) 9:621–626

    CAS  PubMed  Google Scholar 

  6. Chung H, Dai T, Sharma SK, Huang YY, Carroll JD, Hamblin MR (2012) The nuts and bolts of low-level laser (light) therapy. Ann Biomed Eng 40:516–533. https://doi.org/10.1007/s10439-011-0454-7

    Article  PubMed  Google Scholar 

  7. Hamblin MR (2016) Shining light on the head: photobiomodulation for brain disorders. BBA Clinical 6:113–124. https://doi.org/10.1016/j.bbacli.2016.09.002

    Article  PubMed  PubMed Central  Google Scholar 

  8. Arany PR, Nayak RS, Hallikerimath S, Limaye AM, Kale AD, Kondaiah P (2007) Activation of latent TGF-beta1 by low-power laser in vitro correlates with increased TGF-beta1 levels in laser-enhanced oral wound healing. Wound Repair Regen 15:866–874. https://doi.org/10.1111/j.1524-475X.2007.00306.x

    Article  PubMed  Google Scholar 

  9. Cardoso LM, Pansani TN, Hebling J, de Souza Costa CA, Basso FG (2020) Photobiomodulation of inflammatory-cytokine-related effects in a 3-D culture model with gingival fibroblasts. Lasers Med Sci 35:1205–1212. https://doi.org/10.1007/s10103-020-02974-8

    Article  PubMed  Google Scholar 

  10. Mokoena DR, Houreld NN, Dhilip Kumar SS, Abrahamse H (2020) Photobiomodulation at 660 nm stimulates fibroblast differentiation. Lasers Surg Med 52:671–681. https://doi.org/10.1002/lsm.23204

    Article  PubMed  Google Scholar 

  11. Dancáková L, Vasilenko T, Kováč I, Jakubčová K, Hollý M, Revajová V, Sabol F, Tomori Z, Iversen M, Gál P, Bjordal JM (2014) Low-level laser therapy with 810 nm wavelength improves skin wound healing in rats with streptozotocin-induced diabetes. Photomed Laser Surg 32:198–204. https://doi.org/10.1089/pho.2013.3586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mathur RK, Sahu K, Saraf S, Patheja P, Khan F, Gupta PK (2017) Low-level laser therapy as an adjunct to conventional therapy in the treatment of diabetic foot ulcers. Lasers Med Sci 32:275–282. https://doi.org/10.1007/s10103-016-2109-2

    Article  CAS  PubMed  Google Scholar 

  13. Kuffler DP (2016) Photobiomodulation in promoting wound healing: a review. Regen Med 11:107–122. https://doi.org/10.2217/rme.15.82

    Article  CAS  PubMed  Google Scholar 

  14. Raizman R, Gavish L (2020) At-home self-applied photobiomodulation device for the treatment of diabetic foot ulcers in adults with type 2 diabetes: report of 4 cases. Can J Diabetes 44:375–378. https://doi.org/10.1016/j.jcjd.2020.01.010

    Article  PubMed  Google Scholar 

  15. Karu TI (2010) Multiple roles of cytochrome c oxidase in mammalian cells under action of red and IR-A radiation. IUBMB Life 62:607–610. https://doi.org/10.1002/iub.359

    Article  CAS  PubMed  Google Scholar 

  16. Karu TI, Kolyakov SF (2005) Exact action spectra for cellular responses relevant to phototherapy. Photomed Laser Surg 23:355–361. https://doi.org/10.1089/pho.2005.23.355

    Article  CAS  PubMed  Google Scholar 

  17. Huang YY, Chen AC, Carroll JD, Hamblin MR (2009) Biphasic dose response in low level light therapy. Dose Response 7:358–383. https://doi.org/10.2203/dose-response.09-027.Hamblin

    Article  PubMed  PubMed Central  Google Scholar 

  18. Keszler A, Lindemer B, Weihrauch D, Jones D, Hogg N, Lohr NL (2017) Red/near infrared light stimulates release of an endothelium dependent vasodilator and rescues vascular dysfunction in a diabetes model. Free Radic Biol Med 113:157–164. https://doi.org/10.1016/j.freeradbiomed.2017.09.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Furchgott RF, Ehrreich SJ, Greenblatt E (1961) The photoactivated relaxation of smooth muscle of rabbit aorta. J Gen Physiol 44:499–519. https://doi.org/10.1085/jgp.44.3.499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhang P, Zhu H (2022) Light signaling and myopia development: a review. Ophthalmol Ther 11:939–957. https://doi.org/10.1007/s40123-022-00490-2

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hung LF, Arumugam B, She Z, Ostrin L, Smith EL 3rd (2018) Narrow-band, long-wavelength lighting promotes hyperopia and retards vision-induced myopia in infant rhesus monkeys. Exp Eye Res 176:147–160. https://doi.org/10.1016/j.exer.2018.07.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhou L, Xing C, Qiang W, Hua C, Tong L (2022) Low-intensity, long-wavelength red light slows the progression of myopia in children: an Eastern China-based cohort. Ophthalmic Physiol Opt 42:335–344. https://doi.org/10.1111/opo.12939

    Article  PubMed  Google Scholar 

  23. Jiang Y, Zhu Z, Tan X, Kong X, Zhong H, Zhang J, Xiong R, Yuan Y, Zeng J, Morgan IG, He M (2022) Effect of repeated low-level red-light therapy for myopia control in children: a multicenter randomized controlled trial. Ophthalmology 129:509–519. https://doi.org/10.1016/j.ophtha.2021.11.023

    Article  PubMed  Google Scholar 

  24. Thapa P, Li M, Bio M, Rajaputra P, Nkepang G, Sun Y, Woo S, You Y (2016) Far-red light-activatable prodrug of paclitaxel for the combined effects of photodynamic therapy and site-specific paclitaxel chemotherapy. J Med Chem 59:3204–3214. https://doi.org/10.1021/acs.jmedchem.5b01971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shi X, Meng H, Sun Y, Qu L, Lin Y, Li Z, Du D (2019) Far-red to near-infrared carbon dots: preparation and applications in biotechnology. Small 15:e1901507. https://doi.org/10.1002/smll.201901507

    Article  CAS  PubMed  Google Scholar 

  26. Zhao F, Zhang D, Zhou Q et al (2020) Scleral HIF-1α is a prominent regulatory candidate for genetic and environmental interactions in human myopia pathogenesis. EBioMedicine 57:102878. https://doi.org/10.1016/j.ebiom.2020.102878

    Article  PubMed  PubMed Central  Google Scholar 

  27. McBrien NA, Cornell LM, Gentle A (2001) Structural and ultrastructural changes to the sclera in a mammalian model of high myopia. Invest Ophthalmol Vis Sci 42:2179–2187

    CAS  PubMed  Google Scholar 

  28. Yang Y, Li X, Yan N, Cai S, Liu X (2009) Myopia: a collagen disease? Med Hypotheses 73:485–487. https://doi.org/10.1016/j.mehy.2009.06.020

    Article  CAS  PubMed  Google Scholar 

  29. Hopkins JT, McLoda TA, Seegmiller JG, David Baxter G (2004) Low-level laser therapy facilitates superficial wound healing in humans: a triple-blind, sham-controlled study. J Athl Train 39:223–229

    PubMed  PubMed Central  Google Scholar 

  30. Aimbire F, Albertini R, Pacheco MT, Castro-Faria-Neto HC, Leonardo PS, Iversen VV, Lopes-Martins RA, Bjordal JM (2006) Low-level laser therapy induces dose-dependent reduction of TNFalpha levels in acute inflammation. Photomed Laser Surg 24:33–37. https://doi.org/10.1089/pho.2006.24.33

    Article  CAS  PubMed  Google Scholar 

  31. Hamblin MR (2018) Photobiomodulation for traumatic brain injury and stroke. J Neurosci Res 96:731–743. https://doi.org/10.1002/jnr.24190

    Article  CAS  PubMed  Google Scholar 

  32. Zecha JA, Raber-Durlacher JE, Nair RG et al (2016) Low-level laser therapy/photobiomodulation in the management of side effects of chemoradiation therapy in head and neck cancer: part 2: proposed applications and treatment protocols. Support Care Cancer 24:2793–2805. https://doi.org/10.1007/s00520-016-3153-y

    Article  PubMed  PubMed Central  Google Scholar 

  33. Xiong R, Zhu Z, Jiang Y et al (2022) Sustained and rebound effect of repeated low-level red-light therapy on myopia control: a 2-year post-trial follow-up study. Clin Exp Ophthalmol 50:1013–1024. https://doi.org/10.1111/ceo.14149

    Article  PubMed  PubMed Central  Google Scholar 

  34. Dong J, Zhu Z, Xu H, He M (2023) Myopia control effect of repeated low-level red-light therapy in Chinese children: a randomized, double-blind, controlled clinical trial. Ophthalmology 130:198–204. https://doi.org/10.1016/j.ophtha.2022.08.024

  35. Jiang L, Zhang S, Schaeffel F, Xiong S, Zheng Y, Zhou X, Lu F, Qu J (2014) Interactions of chromatic and lens-induced defocus during visual control of eye growth in guinea pigs (Cavia porcellus). Vision Res 94:24–32. https://doi.org/10.1016/j.visres.2013.10.020

    Article  PubMed  Google Scholar 

  36. Wang M, Schaeffel F, Jiang B, Feldkaemper M (2018) Effects of light of different spectral composition on refractive development and retinal dopamine in chicks. Invest Ophthalmol Vis Sci 59:4413–4424. https://doi.org/10.1167/iovs.18-23880

    Article  CAS  PubMed  Google Scholar 

  37. Smith EL III, Hung L-F, Arumugam B, Holden BA, Neitz M, Neitz J (2015) Effects of long-wavelength lighting on refractive development in infant rhesus monkeys. Invest Ophthalmol Vis Sci 56:6490–6500. https://doi.org/10.1167/iovs.15-17025

    Article  PubMed  PubMed Central  Google Scholar 

  38. Gawne TJ, Siegwart JT, Ward AH, Norton TT (2017) The wavelength composition and temporal modulation of ambient lighting strongly affect refractive development in young tree shrews. Exp Eye Res 155:75–84. https://doi.org/10.1016/j.exer.2016.12.004

    Article  CAS  PubMed  Google Scholar 

  39. Hu D, van Zeyl M, Valter K, Potas JR (2019) Sex, but not skin tone affects penetration of red-light (660 nm) through sites susceptible to sports injury in lean live and cadaveric tissues. J Biophotonics 12:e201900010. https://doi.org/10.1002/jbio.201900010

    Article  CAS  PubMed  Google Scholar 

  40. Tedford CE, DeLapp S, Jacques S, Anders J (2015) Quantitative analysis of transcranial and intraparenchymal light penetration in human cadaver brain tissue. Lasers Surg Med 47:312–322. https://doi.org/10.1002/lsm.22343

    Article  PubMed  Google Scholar 

  41. Gawne TJ, Norton TT (2020) An opponent dual-detector spectral drive model of emmetropization. Vision Res 173:7–20. https://doi.org/10.1016/j.visres.2020.03.011

    Article  PubMed  PubMed Central  Google Scholar 

  42. Xiong R, Zhu Z, Jiang Y, Wang W, Zhang J, Chen Y, Bulloch G, Yuan Y, Zhang S, Xuan M, Zeng J, He M (2023) Longitudinal changes and predictive value of choroidal thickness for myopia control after repeated low-level red-light therapy. Ophthalmology 130:286–296. https://doi.org/10.1016/j.ophtha.2022.10.002

  43. Kim H, Kim Y, Kim TH, Heo SY, Jung WK, Kang HW (2022) Stimulatory effects of wavelength-dependent photobiomodulation on proliferation and angiogenesis of colorectal cancer. J Photochem Photobiol B 234:112527. https://doi.org/10.1016/j.jphotobiol.2022.112527

    Article  CAS  PubMed  Google Scholar 

  44. Rhee YH, Moon JH, Choi SH, Ahn JC (2016) Low-level laser therapy promoted aggressive proliferation and angiogenesis through decreasing of transforming growth factor-β1 and increasing of akt/hypoxia inducible factor-1α in anaplastic thyroid cancer. Photomed Laser Surg 34:229–35. https://doi.org/10.1089/pho.2015.3968

  45. Pyo SJ, Song WW, Kim IR, Park BS, Kim CH, Shin SH, Chung IK, Kim YD (2013) Low-level laser therapy induces the expressions of BMP-2, osteocalcin, and TGF-β1 in hypoxic-cultured human osteoblasts. Lasers Med Sci 28:543–550. https://doi.org/10.1007/s10103-012-1109-0

    Article  PubMed  Google Scholar 

  46. Ma Y, Li P, Ju C et al (2022) Photobiomodulation attenuates neurotoxic polarization of macrophages by inhibiting the Notch1-HIF-1α/NF-κB signalling pathway in mice with spinal cord injury. Front Immunol 13:816952. https://doi.org/10.3389/fimmu.2022.816952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hsieh Y-L, Chou L-W, Chang P-L, Yang C-C, Kao M-J, Hong C-Z (2012) Low-level laser therapy alleviates neuropathic pain and promotes function recovery in rats with chronic constriction injury: possible involvements in hypoxia-inducible factor 1α (HIF-1α). J Comp Neurol 520:2903–2916. https://doi.org/10.1002/cne.23072

    Article  CAS  PubMed  Google Scholar 

  48. Huang YY, Sharma SK, Carroll J, Hamblin MR (2011) Biphasic dose response in low level light therapy - an update. Dose Response 9:602–618. https://doi.org/10.2203/dose-response.11-009.Hamblin

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pereira AN, Eduardo Cde P, Matson E, Marques MM (2002) Effect of low-power laser irradiation on cell growth and procollagen synthesis of cultured fibroblasts. Lasers Surg Med 31:263–267. https://doi.org/10.1002/lsm.10107

    Article  PubMed  Google Scholar 

  50. Fuchs C, Schenk MS, Pham L, Cui L, Anderson RR, Tam J (2021) Photobiomodulation response from 660 nm is different and more durable than that from 980 nm. Lasers Surg Med 53:1279–1293. https://doi.org/10.1002/lsm.23419

    Article  PubMed  Google Scholar 

  51. AlGhamdi KM, Kumar A, Moussa NA (2012) Low-level laser therapy: a useful technique for enhancing the proliferation of various cultured cells. Lasers Med Sci 27:237–249. https://doi.org/10.1007/s10103-011-0885-2

    Article  PubMed  Google Scholar 

  52. Fekrazad R, Asefi S, Allahdadi M, Kalhori KA (2016) Effect of photobiomodulation on mesenchymal stem cells. Photomed Laser Surg 34:533–542. https://doi.org/10.1089/pho.2015.4029

    Article  PubMed  Google Scholar 

  53. Ayuk SM, Houreld NN, Abrahamse H (2018) Effect of 660 nm visible red light on cell proliferation and viability in diabetic models in vitro under stressed conditions. Lasers Med Sci 33:1085–1093. https://doi.org/10.1007/s10103-017-2432-2

    Article  CAS  PubMed  Google Scholar 

  54. Arany PR (2012) Photobiomodulation: poised from the fringes. Photomed Laser Surg 30:507–9. https://doi.org/10.1089/pho.2012.9884

Download references

Author information

Authors and Affiliations

Authors

Contributions

Pengbo Zhang conceived, designed, and performed the experiments. Xibo Zhang and Huang Zhu designed and modified this article.

Corresponding authors

Correspondence to Xibo Zhang or Huang Zhu.

Ethics declarations

All named authors meet the International Committee of Medical Journal Editors (ICMJE) criteria for authorship for this article, take responsibility for the integrity of the work as a whole, and have given their approval for this version to be published.

Ethics approval

The study was performed in accordance with the Helsinki Declaration of 1964, and its later amendments. Informed consent to include potentially identifiable data was acquired from all the participants.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, P., Zhang, X. & Zhu, H. Photobiomodulation at 660 nm promotes collagen synthesis via downregulation of HIF-1α expression without photodamage in human scleral fibroblasts in vitro in a hypoxic environment. Graefes Arch Clin Exp Ophthalmol 261, 2535–2545 (2023). https://doi.org/10.1007/s00417-023-06066-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-023-06066-5

Keywords

Navigation