Skip to main content

Advertisement

Log in

Effect of 660 nm visible red light on cell proliferation and viability in diabetic models in vitro under stressed conditions

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

The current study evaluated the photobiomodulatory effect of visible red light on cell proliferation and viability in various fibroblast diabetic models in vitro, namely, unstressed normal (N) and stressed normal wounded (NW), diabetic wounded (DW), hypoxic wounded (HW) and diabetic hypoxic wounded (DHW). Cells were irradiated at a wavelength of 660 nm with a fluence of 5 J/cm2 (11.23 mW/cm2), which related to an irradiation time of 7 min and 25 s. Control cells were not irradiated (0 J/cm2). Cells were incubated for 48 h and cellular proliferation was determined by measuring 5-bromo-2′-deoxyuridine (BrdU) in the S-phase (flow cytometry), while viability was assessed by the Trypan blue exclusion test and Apoptox-glo triplex assay. In comparison with the respective controls, PBM increased viability in N- (P ≤ 0.001), HW- (P ≤ 0.01) and DHW-cells (P ≤ 0.05). HW-cells showed a significant progression in the S-phase (P ≤ 0.05). Also, there was a decrease in the G2M phase in HW- and DHW-cells (P ≤ 0.05 and P ≤ 0.05, respectively). This study concludes that hypoxic wounded and diabetic hypoxic wounded models responded positively to PBM, and PBM does not damage stressed cells but has a stimulatory effect on cell viability and proliferation to promote repair and wound healing. This suggests that the more stressed the cells are the better they responded to photobiomodulation (PBM).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Diabetes atlas (2015) http://www.idf.org/diabetesatlas. Accessed 22 Aug

  2. Global status report on non-communicable diseases 2010 (2016) http://www.who.int/chp/ncd_global_status_report/en. Accessed 29 Aug

  3. Guo S, DiPietro LA (2010) Critical review in oral biology & medicine: factors affecting wound healing. J Dent Res 89:219–229

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Denadai AS, Aydos DR, Silva SL, Olmedo L, de Senna Cardoso BMS, da Silva AKB, Carvalho PTC (2015) Acute effects of low-level laser therapy (660 nm) on oxidative stress levels in diabetic rats with skin wounds. J Exp Ther Oncol 11:85–89

    CAS  Google Scholar 

  5. Chen Y, Yang S, Hu J, Yu C, He M, Cai Z (2016) Increased expression of SETD7 promotes cell proliferation by regulating cell cycle and indicates poor prognosis in hepatocellular carcinoma. PLoS One 11:e0154939

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Francis-Goforth KN, Harken AH, Saba JD (2010) Normalization of diabetic wound healing. Surgery 147:446–449

    Article  PubMed  Google Scholar 

  7. Peppa M, Stavroulakis P, Raptis SA (2009) Advanced glycoxidation products and impaired diabetic wound healing. Wound Repair Regen 17:461–472

    Article  PubMed  Google Scholar 

  8. Wagener FA, Carels C, Lundvig D (2013) Targeting the redox balance in inflammatory skin conditions. Int J Mol Sci 14:9126–9167

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Anders JJ, Lanzafame RJ, Arany PR (2015) Low-level light/laser therapy versus photobiomodulation therapy. Photomed Laser Surg 33:183–184. https://doi.org/10.1089/pho.2015.9848

    Article  PubMed  PubMed Central  Google Scholar 

  10. Chaves MEA, de Araújo AR, ACC P, Pinotti M (2014) Effects of low-power light therapy on wound healing: LASER x LED*. An Bras Dermatol 89(4):616–623

    Article  PubMed  PubMed Central  Google Scholar 

  11. Karu T (1999) Primary and secondary mechanisms of action of visible to near-IR radiation on cells. J Photochem Photobiol 49:1–17. https://doi.org/10.1016/S1011-1344(98)00219-X

    Article  CAS  Google Scholar 

  12. Silveira PC, Silva LA, Pinho CA, Souza PS, Ronsani MM, Scheffer DL, Pinho RA (2013) Effects of low-level laser therapy (GaAs) in an animal model of muscular damage induced by trauma. Lasers Med Sci 28:431–436

    Article  PubMed  Google Scholar 

  13. Soares DM, Ginani F, Henriques A, Barboza C (2015) Effects of laser therapy on the proliferation of human periodontal ligament stem cells. Lasers Med Sci 30:1171–1174

    Article  PubMed  Google Scholar 

  14. Fujihara NA, Hiraki KR, Marque MM (2006) Irradiation at 780 nm increases proliferation rate of osteoblasts independently of dexamethasone presence. Lasers Surg Med 38:332–336

    Article  PubMed  Google Scholar 

  15. Tschon M, Incerti-Parenti S, Cepollaro S, Checchi L, Fini M (2015) Photobiomodulation with low-level diode laser promotes osteoblast migration in an in vitro micro wound model. J Biomed Opt 20:78002. https://doi.org/10.1117/1.JBO.20.7.078002

    Article  PubMed  Google Scholar 

  16. Stadler I, Evans R, Kolb B, Naim JO, Narayan V, Buehner N, Lanzafame RJ (2000) In vitro effects of low-level laser irradiation at 660 nm on peripheral blood lymphocytes. Lasers Surg Med 27:255–261

    Article  PubMed  CAS  Google Scholar 

  17. Eduardo FP, Mehnert DU, Monezi TA, Zezell DM, Schubert MM, Eduardo CP, Marques MM (2007) Cultured epithelial cells response to phototherapy with low-intensity laser. Lasers Surg Med 39:365–372. https://doi.org/10.1002/lsm.20481

    Article  PubMed  Google Scholar 

  18. Ejiri K, Aoki A, Yamaguchi Y, Ohshima M, Izumi Y (2014) High-frequency low-level diode laser irradiation promotes proliferation and migration of primary cultured human gingival epithelial cells. Lasers Med Sci 29:1339–1347. https://doi.org/10.1007/s10103-013-1292-7

    Article  PubMed  Google Scholar 

  19. Moore P, Ridgway TD, Higbee RG, Howard EW, Lucroy MD (2005) Effect of wavelength on low-intensity laser irradiation-stimulated cell proliferation in vitro. Lasers Surg Med 36:8–12. https://doi.org/10.1002/lsm.20117

    Article  PubMed  Google Scholar 

  20. Barboza CA, Ginani F, Soares DM, Henriques AC, Freitas Rde A (2014) Low-level laser irradiation induces in vitro proliferation of mesenchymal stem cells. Einstein (Sao Paulo) 12:75–81

    Article  Google Scholar 

  21. Ginani F, Soares DM, Barreto MP, Barboza CA (2015) Effect of low-level laser therapy on mesenchymal stem cell proliferation: a systematic review. Lasers Med Sci 30:2189–2194. https://doi.org/10.1007/s10103-015-1730-9

    Article  PubMed  Google Scholar 

  22. YH W, Wang J, Gong DX, HY G, SS H, Zhang H (2012) Effects of low-level laser irradiation on mesenchymal stem cell proliferation: a microarray analysis. Lasers Med Sci 27:509–519. https://doi.org/10.1007/s10103-011-0995-x

    Article  Google Scholar 

  23. Ayuk SM, Houreld NN, Abrahamse H (2012) Collagen production in diabetic wounded fibroblasts in response to low intensity laser irradiation (LILI) at 660 nm. Diabetes Technol Ther 14:1110–1117

    Article  PubMed  CAS  Google Scholar 

  24. Basso FG, Pansani TN, Turrioni APS, Bagnato VS, Hebling J, CAde S (2012) In vitro wound healing improvement by low-level laser therapy application in cultured gingival fibroblasts. Int J Dent 2012:719452

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hawkins D, Abrahamse H (2006) Effect of multiple exposures of low-level laser therapy on the cellular responses of wounded human skin fibroblasts. Photomed Laser Surg 24:705–714

    Article  PubMed  CAS  Google Scholar 

  26. Duan X, Ponomareva L, Veeranki S, Choubey D (2011) IFI16 induction by glucose restriction in human fibroblasts contributes to autophagy through activation of the ATM/AMPK/p53 pathway. PLoS One 6(5):e19532. https://doi.org/10.1371/journal.pone.0019532

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Hemsley CM, Luo JX, Andreae CA, Butler CS, Soyer OS, Titball RW (2014) Bacterial drug tolerance under clinical conditions is governed by anaerobic adaptation but not anaerobic respiration. Antimicrob Agents Chemother 58(10):5775–5783

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Houreld N, Abrahamse H (2007) Irradiation with a 632.8 nm helium-neon laser with 5 J/cm2 stimulates proliferation and expression of Interleukin-6 in diabetic wounded fibroblast cells. Diabetes Technol Ther 9(5):451–459

    Article  PubMed  CAS  Google Scholar 

  29. Rigau J, Sun C, Trelles MA, Berns M (1996) Effects of the 633 nm laser on the behaviour and morphology of primary fibroblasts in culture. Proc SPIE 3198:38–45

    Article  Google Scholar 

  30. Liang CC, Park AY, Guan JL (2007) In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat Protoc 2:329–333

    Article  PubMed  CAS  Google Scholar 

  31. Elosta A, Ghous T, Ahmed N (2012) Natural products as anti-glycation agents: possible therapeutic potential for diabetic complications. Curr Diabetes Rev 8(2):92–108

    Article  PubMed  CAS  Google Scholar 

  32. Tang Y, Chen A (2014) Curcumin eliminates the effect of advanced glycation end-products (AGEs) on the divergent regulation of gene expression of receptors of AGEs by interrupting leptin signalling. Lab Investig 94:503–516. https://doi.org/10.1038/labinvest.2014.42

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Muller-Buhl U, Leutgeb R, Bungartz J, Szecsenyi J, Laux G (2013) Expenditure of chronic venous leg ulcer management in German primary care: results from a population-based study. Int Wound J 10:52–56. https://doi.org/10.1111/j.1742-481X.2012.00942.x

    Article  PubMed  Google Scholar 

  34. Rüttermann M, Maier-Hasselmann A, Nink-Grebe B, Burckhardt M (2013) Local treatment of chronic wounds in patients with peripheral vascular disease, chronic venous insufficiency, and diabetes. Dtsch Arztebl Int 110:25–31. https://doi.org/10.3238/arztebl.2013.0025.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Sekhejane PR, Houreld NN, Abrahamse H (2011) Irradiation at 636 nm positively affects diabetic wounded and hypoxic cells in vitro. Photomed Laser Surg 29:521–530

    Article  PubMed  Google Scholar 

  36. Alghamdi KM, Kumar A, Mouss NA (2012) Low-level laser therapy: a useful technique for enhancing the proliferation of various cultured cells. Lasers Med Sci 27:237–249. https://doi.org/10.1007/s10103-011-0885-2

    Article  PubMed  Google Scholar 

  37. Fekrazad R, Asefi S, Allahdadi M, Kalhori KA (2016) Effect of photobiomodulation on mesenchymal stem cells. Photomed Laser Surg 34:543–549. https://doi.org/10.1089/pho.2015.4028.

    Article  PubMed  CAS  Google Scholar 

  38. Al-Watban FAH (2009) Laser therapy converts diabetic wound healing to normal healing. Photomed Laser Surg 27(1):127–135

    Article  PubMed  Google Scholar 

  39. Houreld N, Abrahamse H (2010) Low-intensity laser irradiation stimulates wound healing in diabetic wounded fibroblast cells (WS1). Diabetes Technol Ther 12(12):971–978

    Article  PubMed  Google Scholar 

  40. Hamblin MR (2008) Mechanisms of low level light therapy, http://photobiology.info/Hamblin.html

  41. Pellicioli AC, Martins MD, Dillenburg CS, Marques MM, Squarize CH, Castilho RM (2014) Laser phototherapy accelerates oral keratinocyte migration through the modulation of the mammalian target of rapamycin signaling pathway. J Biomed Opt 19:028002. https://doi.org/10.1117/1.JBO.19.2.028002

    Article  PubMed  CAS  Google Scholar 

  42. Houreld N, Masha R, Abrahamse H (2012) Low-intensity laser irradiation at 660 nm stimulates cytochrome c oxidase in stressed fibroblast cells. Lasers Surg Med 44:429–434. https://doi.org/10.1002/lsm.22027

    Article  PubMed  Google Scholar 

  43. Peplow P, Chung T, Baxter G (2010) Laser photobiomodulation of proliferation of cells in culture: a review of human and animal studies. Photomed Laser Surg 28(supplement 1):S3–S40

    Article  PubMed  Google Scholar 

  44. Woodruff L, Bounkeo J, Brannon W, Dawes K, Barham C, Waddell D, Enwemeka C (2004) The efficacy of laser therapy in wound repair: a meta-analysis of the literature. Photomed Laser Surg 22:241–247

    Article  PubMed  Google Scholar 

  45. Zungu IL, Hawkins Evans D, Abrahamse H (2009) Mitochondrial responses of normal and injured human skin fibroblasts following low level laser irradiation—an in vitro study. Photochem Photobiol 85:987–996. https://doi.org/10.1111/j.1751-1097.2008.00523.x

    Article  PubMed  CAS  Google Scholar 

  46. Pereira L, Longo J, Azevedo R (2012) Laser irradiation did not increase the proliferation or the differentiation of stem cells from normal and inflamed dental pulp. Arch Oral Biol 57:1079–1085. https://doi.org/10.1016/j.archoralbio.2012.02.012

    Article  PubMed  Google Scholar 

  47. Lamers M, Almeida M, Vicente-Manzanares M, Horwitz A, Santos M (2011) High glucose-mediated oxidative stress impairs cell migration. PLoS One 6:e22865. https://doi.org/10.1371/journal.pone.0022865

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Schartinger V, Galvan O, Riechelmann H, Dudás J (2012) Differential responses of fibroblasts, non-neoplastic epithelial cells, and oral carcinoma cells to low-level lasertherapy. Support Care Cancer 20:523–529. https://doi.org/10.1007/s00520-011-1113-0

    Article  PubMed  Google Scholar 

  49. Häkkinen L, Uitto V, Larjava H (2000) Cell biology of gingival wound healing. Periodontology 24:127–152

    Article  Google Scholar 

  50. Posten W, Wrone D, Dover J, Arndt K, Silapunt S, Alam M (2005) Low-level laser therapy for wound healing: mechanism and efficacy. Dermatol Surg 31:334–340

    Article  PubMed  CAS  Google Scholar 

  51. Wiegand C, Hipler U (2008) Methods for the measurement of cell and tissue compatibility including tissue regeneration process. GMS Krankenhhyg Interdiszip 3:1–9

    Google Scholar 

  52. Evans DH, Abrahamse H (2008) Efficacy of three different laser wavelengths for in vitro wound healing. Photodermatol, Photoimmunol & Photomed 24:199–210

    Article  Google Scholar 

Download references

Acknowledgements

All lasers were supplied and set up by the CSIR National Laser Centre.

Funding

This study was funded by the South African Research Chairs Initiative of the Department of Science and Technology and National Research Foundation of South Africa (Grant No. 98337), as well as grants received from the University of Johannesburg, the African Laser Centre (student bursary) and CSIR National Laser Centre Laser Rental Pool Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Houreld.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study received ethical approval from the University of Johannesburg, Faculty of Health Sciences Academic Ethics Committee (AEC01-13-2014).

Additional information

The material in this research paper submitted to Lasers in Medical Science has neither been published nor is being considered elsewhere for publication.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayuk, S.M., Houreld, N.N. & Abrahamse, H. Effect of 660 nm visible red light on cell proliferation and viability in diabetic models in vitro under stressed conditions. Lasers Med Sci 33, 1085–1093 (2018). https://doi.org/10.1007/s10103-017-2432-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-017-2432-2

Keywords

Navigation