Skip to main content

Advertisement

Log in

The effects of pleiotrophin in proliferative vitreoretinopathy

  • Retinal Disorders
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

The purpose of our study was to investigate the effects of pleiotrophin (PTN) in proliferative vitreoretinopathy (PVR) both in vitro and in vivo.

Methods

Immunofluorescence was used to observe the PTN expression in periretinal membrane samples from patients with PVR and controls. ARPE-19 cells were exposed to TGF-β1. The epithelial-to-mesenchymal transition (EMT) of the ARPE-19 cells was confirmed by observed morphological changes and the increased expression of α-SMA and fibronectin at both the mRNA and protein levels. We used specific small interfering (si)RNA to knock down the expression of PTN. The subsequent effects of PTN inhibition were assessed with regard to the EMT, migration, proliferation, cytoskeletal arrangement, TGF-β signaling, PTN signaling, integral tight junction protein expression (e.g., claudin-1 and occludin), and p38 MAPK and p-p38 MAPK levels. Additionally, a PVR rat model was established by the intravitreal injection of ARPE-19 cells transfected with PTN-siRNA and was evaluated accordingly.

Results

PTN was highly expressed in PVR membranes compared to controls. PTN knockdown attenuated the TGF-β1-induced migration, proliferation, cytoskeletal rearrangement, and expression of EMT markers such as α-SMA and fibronectin in the ARPE-19 cells, and these effects may have been mediated through p38 MAPK signaling pathway activation. PTN silencing inhibited the up-regulation of claudin-1 and occludin stimulated by TGF-β1, and PTN knockdown inhibited the proliferative aspects of severe PVR in vivo.

Conclusions

PTN is involved in the process of EMT induced by TGF-β1 in human ARPE-19 cells in vitro, and PTN knockdown attenuated the progression of experimental PVR in vivo. These findings provide new insights into the pathogenesis of PVR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sadaka A, Giuliari GP (2012) Proliferative vitreoretinopathy: current and emerging treatments. Clin Ophthalmol 6:1325–1333. doi:10.2147/OPTH.S27896

    PubMed  PubMed Central  Google Scholar 

  2. Pennock S, Haddock LJ, Eliott D, Mukai S, Kazlauskas A (2014) Is neutralizing vitreal growth factors a viable strategy to prevent proliferative vitreoretinopathy? Prog Retin Eye Res 40:16–34. doi:10.1016/j.preteyeres.2013.12.006

    Article  CAS  PubMed  Google Scholar 

  3. Machemer R, van Horn D, Aaberg TM (1978) Pigment epithelial proliferation in human retinal detachment with massive periretinal proliferation. Am J Ophthalmol 85:181–191. doi:10.1016/S0002-9394(14)75946-X

    Article  CAS  PubMed  Google Scholar 

  4. Lei H, Rheaume M-A, Kazlauskas A (2010) Recent developments in our understanding of how platelet-derived growth factor (PDGF) and its receptors contribute to proliferative vitreoretinopathy. Exp Eye Res 90:376–381. doi:10.1016/j.exer.2009.11.003

    Article  CAS  PubMed  Google Scholar 

  5. Tosi GM, Marigliani D, Romeo N, Toti P (2014) Disease pathways in proliferative vitreoretinopathy: an ongoing challenge. J Cell Physiol 229:1577–1583. doi:10.1002/jcp.24606

    Article  CAS  PubMed  Google Scholar 

  6. Lee H, O’Meara SJ, O’Brien C, Kane R (2007) The role of gremlin, a BMP antagonist, and epithelial-to-mesenchymal transition in proliferative vitreoretinopathy. Invest Ophthalmol Vis Sci 48:4291–4299. doi:10.1167/iovs.07-0086

    Article  PubMed  Google Scholar 

  7. Yang S, Li H, Li M, Wang F (2015) Mechanisms of epithelial-mesenchymal transition in proliferative vitreoretinopathy. Discov Med 20:207–217

    PubMed  Google Scholar 

  8. Kita T, Hata Y, Arita R, Kawahara S, Miura M, Nakao S, Ishibashi T (2008) Role of TGF-beta in proliferative vitreoretinal diseases and ROCK as a therapeutic target. Proc Natl Acad Sci U S A 105:17504–17509. doi:10.1073/pnas.0804054105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kita T, Hata Y, Kano K, Miura M, Nakao S, Noda Y, Ishibashi T (2007) Transforming growth factor-beta2 and connective tissue growth factor in proliferative vitreoretinal diseases: possible involvement of hyalocytes and therapeutic potential of Rho kinase inhibitor. Diabetes 56:231–238. doi:10.2337/db06-0581

    Article  CAS  PubMed  Google Scholar 

  10. Hoerster R, Muether PS, Vierkotten S, Hermann MM, Kirchhof B, Fauser S (2014) Upregulation of TGF-ß1 in experimental proliferative vitreoretinopathy is accompanied by epithelial to mesenchymal transition. Graefes Arch Clin Exp Ophthal 252(1):11–16. doi:10.1007/s00417-013-2377-5

    Article  CAS  Google Scholar 

  11. Papadimitriou E, Polykratis A, Hatziapostolou M, Parthymou A, Polytarchou C, Mikelis C (2004) Heparin affin regulatory peptide: a new target for tumour therapy? Curr Cancer Drug Targets 4:471–482. doi:10.2174/1568009043332835

    Article  CAS  PubMed  Google Scholar 

  12. Deuel TF, Zhang N, Yeh H-J, Silos-Santiago I, Wang Z-Y (2002) Pleiotrophin: a cytokine with diverse functions and a novel signaling pathway. Arch Biochem Biophys 397:162–171. doi:10.1006/abbi.2001.2705

    Article  CAS  PubMed  Google Scholar 

  13. Zhu X, Bai Y, Yu W et al (2015) The effects of pleiotrophin in proliferative diabetic retinopathy. PLoS ONE 10:e0115523. doi:10.1371/journal.pone.0115523

    Article  PubMed  PubMed Central  Google Scholar 

  14. Yokoi H, Kasahara M, Mori K et al (2012) Pleiotrophin triggers inflammation and increased peritoneal permeability leading to peritoneal fibrosis. Kidney Int 81:160–169. doi:10.1038/ki.2011.305

    Article  CAS  PubMed  Google Scholar 

  15. Kohashi T, Tateaki Y, Tateno C, Asahara T, Obara M, Yoshizato K (2002) Expression of pleiotrophin in hepatic nonparenchymal cells and preneoplastic nodules in carbon tetrachloride-induced fibrotic rat liver. Growth Factors 20:53–60. doi:10.1080/08977190290023913

    Article  CAS  PubMed  Google Scholar 

  16. Zhang Q, Tao K, Huang W, Tian Y, Liu X (2013) Elevated expression of pleiotrophin in human hypertrophic scars. J Mol Histol 44:91–96. doi:10.1007/s10735-012-9453-8

    Article  CAS  PubMed  Google Scholar 

  17. Pufe T, Bartscher M, Petersen W, Tillmann B, Mentlein R (2003) Expression of pleiotrophin, an embryonic growth and differentiation factor, in rheumatoid arthritis. Arthritis Rheum 48:660–667. doi:10.1002/art.10839

    Article  CAS  PubMed  Google Scholar 

  18. Park TJ, Jeong BR, Tateno C et al (2008) Pleiotrophin inhibits transforming growth factor beta1-induced apoptosis in hepatoma cell lines. Mol Carcinog 47:784–796. doi:10.1002/mc.20438

    Article  CAS  PubMed  Google Scholar 

  19. Bai Y, Yu W, Han N et al (2013) Effects of semaphorin 3A on retinal pigment epithelial cell activity. Invest Ophthalmol Vis Sci 54:6628–6638. doi:10.1167/iovs.13-12625

    Article  CAS  PubMed  Google Scholar 

  20. Huang L, Yu W, Li X et al (2009) Expression of Robo4 in the fibrovascular membranes from patients with proliferative diabetic retinopathy and its role in RF/6A and RPE cells. Mol Vis 15:1057–1069

    CAS  PubMed  PubMed Central  Google Scholar 

  21. He S, Chen Y, Khankan R et al (2008) Connective tissue growth factor as a mediator of intraocular fibrosis. Invest Ophthalmol Vis Sci 49:4078–4088. doi:10.1167/iovs.07-1302

    Article  PubMed  PubMed Central  Google Scholar 

  22. Lee J, Choi J-H, Joo C-K (2013) TGF-β1 regulates cell fate during epithelial-mesenchymal transition by upregulating survivin. Cell Death Dis 4:e714. doi:10.1038/cddis.2013.244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chung EJ, Chun JN, Jung S-A, Cho JW, Lee JH (2011) TGF-β-stimulated aberrant expression of class III β-tubulin via the ERK signaling pathway in cultured retinal pigment epithelial cells. Biochem Biophys Res Commun 415:367–372. doi:10.1016/j.bbrc.2011.10.074

    Article  CAS  PubMed  Google Scholar 

  24. Yang S, Yao H, Li M, Li H, Wang F (2016) Long non-coding RNA MALAT1 mediates transforming growth factor Beta1-Induced epithelial-mesenchymal transition of retinal pigment epithelial cells. PLoS ONE 11:e0152687. doi:10.1371/journal.pone.0152687

    Article  PubMed  PubMed Central  Google Scholar 

  25. Deuel TF (2013) Anaplastic lymphoma kinase: “ligand independent activation” mediated by the PTN/RPTPβ/ζ signaling pathway. Biochim Biophys Acta 1834:2219–2223. doi:10.1016/j.bbapap.2013.06.004

    Article  CAS  PubMed  Google Scholar 

  26. Pastor JC, de la Rúa ER, Martín F (2002) Proliferative vitreoretinopathy: risk factors and pathobiology. Prog Retin Eye Res 21:127–144. doi:10.1016/S1350-9462(01)00023-4

    Article  PubMed  Google Scholar 

  27. Kalluri R (2009) EMT: when epithelial cells decide to become mesenchymal-like cells. J Clin Invest 119:1417–1419. doi:10.1172/JCI39675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Thiery JP, Acloque H, Huang RY, Nieto MA (2009) Epithelial-mesenchymal transitions in development and disease. Cell 139:871–890. doi:10.1016/j.cell.2009.11.007

    Article  CAS  PubMed  Google Scholar 

  29. Perez-Pinera P, Alcantara S, Dimitrov T, Vega JA, Deuel TF (2006) Pleiotrophin disrupts calcium-dependent homophilic cell-cell adhesion and initiates an epithelial-mesenchymal transition. Proc Natl Acad Sci U S A 103:17795–17800. doi:10.1073/pnas.0607299103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li YS, Milner PG, Chauhan AK et al (1990) Cloning and expression of a developmentally regulated protein that induces mitogenic and neurite outgrowth activity. Science 250:1690–1694. doi:10.1126/science.2270483

    Article  CAS  PubMed  Google Scholar 

  31. Yeh HJ, He YY, Xu J, Hsu CY, Deuel TF (1998) Upregulation of pleiotrophin gene expression in developing microvasculature, macrophages, and astrocytes after acute ischemic brain injury. J Neurosci 18:3699–3707

    CAS  PubMed  Google Scholar 

  32. Petersen W, Rafii M (2001) Immunolocalization of the angiogenetic factor pleiotrophin (PTN) in the growth plate of mice. Arch Orthop Trauma Surg 121:414–416. doi:10.1007/s004020000246

    Article  CAS  PubMed  Google Scholar 

  33. Fang W, Hartmann N, Chow DT, Riegel AT, Wellstein A (1992) Pleiotrophin stimulates fibroblasts and endothelial and epithelial cells and is expressed in human cancer. J Biol Chem 267:25889–25897

    CAS  PubMed  Google Scholar 

  34. Li H, Wang H, Wang F, Gu Q, Xu X (2011) Snail involves in the transforming growth factor β1-mediated epithelial-mesenchymal transition of retinal pigment epithelial cells. PLoS ONE 6:e23322. doi:10.1371/journal.pone.0023322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang Y, Yuan Z, You C et al (2014) Overexpression p21WAF1/CIP1 in suppressing retinal pigment epithelial cells and progression of proliferative vitreoretinopathy via inhibition CDK2 and cyclin E. BMC Ophthalmol 14:144. doi:10.1186/1471-2415-14-144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Baudouin C, Fredj-Reygrobellet D, Brignole F, Nègre F, Lapalus P, Gastaud P (1993) Growth factors in vitreous and subretinal fluid cells from patients with proliferative vitreoretinopathy. Ophthalmic Res 25:52–59. doi:10.1159/000267221

    Article  CAS  PubMed  Google Scholar 

  37. Parapuram SK, Chang B, Li L et al (2009) Differential effects of TGFbeta and vitreous on the transformation of retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 50:5965–5974. doi:10.1167/iovs.09-3621

    Article  PubMed  Google Scholar 

  38. Suh Y, Yoon C-H, Kim R-K et al (2013) Claudin-1 induces epithelial-mesenchymal transition through activation of the c-Abl-ERK signaling pathway in human liver cells. Oncogene 32:4873–4882. doi:10.1038/onc.2012.505

    Article  CAS  PubMed  Google Scholar 

  39. Kanasty R, Dorkin JR, Vegas A, Anderson D (2013) Delivery materials for siRNA therapeutics. Nat Mater 12:967–977. doi:10.1038/nmat3765

    Article  CAS  PubMed  Google Scholar 

  40. Weng T, Chen Z, Jin N, Gao L, Liu L (2006) Gene expression profiling identifies regulatory pathways involved in the late stage of rat fetal lung development. Am J Physiol Lung Cell Mol Physiol 291:L1027–L1037. doi:10.1152/ajplung.00435.2005

    Article  CAS  PubMed  Google Scholar 

  41. Agrawal RN, He S, Spee C, Cui JZ, Ryan SJ, Hinton DR (2007) In vivo models of proliferative vitreoretinopathy. Nat Protoc 2:67–77. doi:10.1038/nprot.2007.4

    Article  CAS  PubMed  Google Scholar 

  42. Lee J, Ko M, Joo C-K (2008) Rho plays a key role in TGF-beta1-induced cytoskeletal rearrangement in human retinal pigment epithelium. J Cell Physiol 216:520–526. doi:10.1002/jcp.21424

    Article  CAS  PubMed  Google Scholar 

  43. Kojima T, Takano K, Yamamoto T et al (2008) Transforming growth factor-beta induces epithelial to mesenchymal transition by down-regulation of claudin-1 expression and the fence function in adult rat hepatocytes. Liver Int 28:534–545. doi:10.1111/j.1478-3231.2007.01631.x

    Article  CAS  PubMed  Google Scholar 

  44. Turksen K, Troy TC (2011) Junctions gone bad: claudins and loss of the barrier in cancer. Biochim Biophys Acta 1816:73–79. doi:10.1016/j.bbcan.2011.04.001

    CAS  PubMed  Google Scholar 

  45. Stebbing J, Filipović A, Giamas G (2013) Claudin-1 as a promoter of EMT in hepatocellular carcinoma. Oncogene 32:4871–4872. doi:10.1038/onc.2012.591

    Article  CAS  PubMed  Google Scholar 

  46. Chen X-F, Zhang H-J, Wang H-B et al (2012) Transforming growth factor-β1 induces epithelial-to-mesenchymal transition in human lung cancer cells via PI3K/Akt and MEK/Erk1/2 signaling pathways. Mol Biol Rep 39:3549–3556. doi:10.1007/s11033-011-1128-0

    Article  CAS  PubMed  Google Scholar 

  47. Manna A, De Sarkar S, De S, Bauri AK, Chattopadhyay S, Chatterjee M (2016) Impact of MAPK and PI3K/AKT signaling pathways on Malabaricone-A induced cytotoxicity in U937, a histiocytic lymphoma cell line. Int Immunopharmacol 39:34–40. doi:10.1016/j.intimp.2016.07.004

    Article  CAS  PubMed  Google Scholar 

  48. Polytarchou C, Hatziapostolou M, Poimenidi E et al (2009) Nitric oxide stimulates migration of human endothelial and prostate cancer cells through up-regulation of pleiotrophin expression and its receptor protein tyrosine phosphatase beta/zeta. Int J Cancer 124:1785–1793. doi:10.1002/ijc.24084

    Article  CAS  PubMed  Google Scholar 

  49. Zhao H-M, Sheng M-J, Yu J (2014) Expression of IGFBP-6 in a proliferative vitreoretinopathy rat model and its effects on retinal pigment epithelial cell proliferation and migration. Int J Ophthalmol 7:27–33. doi:10.3980/j.issn.2222-3959.2014.01.05

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Youzhi Yu for her help with the immunofluorescence assays and Yang Li for suggesting the Western blot analysis.

Author contributions

Research design: D. Xue, Y.J. Bai

Experiments: D. Xue

Data analysis: D. Xue, Y.J. Bai

Manuscript writing: D. Xue, Y.J. Bai

Manuscript review: Y.J. Bai, M.W. Zhao

Grant acquisition: M.W. Zhao

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingwei Zhao.

Ethics declarations

Funding

This work was supported by the National Natural Science Foundation of China (grant nos. 81470651 and 81570858) and the Specialized Research Fund for the Doctoral Program of Higher Education for ZMW (20130001110086). The funders had no role in the study design, data collection and analysis, decision to publish or preparation of the manuscript.

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements) or non-financial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Xue Ding and Yujing Bai contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, X., Bai, Y., Zhu, X. et al. The effects of pleiotrophin in proliferative vitreoretinopathy. Graefes Arch Clin Exp Ophthalmol 255, 873–884 (2017). https://doi.org/10.1007/s00417-016-3582-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-016-3582-9

Keywords

Navigation