Skip to main content
Log in

Properties of electrically evoked potentials activated by optic nerve stimulation with penetrating electrodes of different modes in rabbits

  • Basic Science
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To investigate the effect of different stimulation modes on cortical electrically evoked potentials (EEPs) by intraorbital optic nerve (ON) stimulation with penetrating electrodes.

Methods

A stimulating electrode array with three electrodes arranged linearly was inserted into the ON along its axis. EEPs were recorded using a 4 × 4 silver-ball electrode array in response to monopolar and bipolar stimulation mode, respectively.

Results

The simultaneous monopolar stimulation mode had a lower threshold than the individual monopolar stimulation mode, but elicited smaller cortical response when a fixed charge was injected. The threshold of the bipolar stimulation mode was comparable to that of individual monopolar stimulation mode. The response to the smaller spacing (150 μm) bipolar stimulation mode was similar in amplitude to that of the individual monopolar stimulation mode, but spread wider. The larger spacing (500 μm) bipolar stimulation mode elicited stronger and wider response than the individual monopolar stimulation mode. For the individual monopolar stimulation mode, stimulation with different electrodes can be differentiated even when the spacing of the two electrodes was 150 μm.

Conclusions

For ON stimulation with penetrating electrodes, the monopolar stimulation mode could induce more localized cortical responses than the bipolar stimulation mode with comparable threshold and had a high stimulation selectivity. These findings may provide valuable information for the design of stimulation strategy of the penetrative ON visual prosthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References:

  1. Hartong DT, Berson EL, Dryja TP (2006) Retinitis pigmentosa. Lancet 368(9549):1795–1809

    Article  CAS  PubMed  Google Scholar 

  2. Heckenlively JR, Boughman J, Friedman L (1988) Diagnosis and classification of retinitis pigmentosa. Lippincott, Philadelphia

  3. Brindley GS, Lewin WS (1968) The sensations produced by electrical stimulation of the visual cortex. J Physiol 196(2):479–493

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Davis TS, Parker RA, House PA, Bagley E, Wendelken S, Normann RA, Greger B (2012) Spatial and temporal characteristics of V1 microstimulation during chronic implantation of a microelectrode array in a behaving macaque. J Neural Eng 9(6):065003

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Dobelle WH, Mladejovsky MG, Girvin JP (1974) Artificial vision for the blind: electrical stimulation of visual cortex offers hope for a functional prosthesis. Science 183(4123):440–444

    Article  CAS  PubMed  Google Scholar 

  6. Schmidt EM, Bak MJ, Hambrecht FT, Kufta CV, O'Rourke DK, Vallabhanath P (1996) Feasibility of a visual prosthesis for the blind based on intracortical microstimulation of the visual cortex. Brain 119(Pt 2):507–522

    Article  PubMed  Google Scholar 

  7. Torab K, Davis TS, Warren DJ, House PA, Normann RA, Greger B (2011) Multiple factors may influence the performance of a visual prosthesis based on intracortical microstimulation: nonhuman primate behavioural experimentation. J Neural Eng 8(3):035001

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Sakaguchi H, Fujikado T, Fang X, Kanda H, Osanai M, Nakauchi K, Ikuno Y, Kamei M, Yagi T, Nishimura S, Ohji M, Tano Y (2004) Transretinal electrical stimulation with a suprachoroidal multichannel electrode in rabbit eyes. Jpn J Ophthalmol 48(3):256–261

    Article  PubMed  Google Scholar 

  9. Chow AY, Chow VY (1997) Subretinal electrical stimulation of the rabbit retina. Neurosci Lett 225(1):13–16

    Article  CAS  PubMed  Google Scholar 

  10. Chow AY, Pardue MT, Chow VY, Peyman GA, Liang C, Perlman JI, Peachey NS (2001) Implantation of silicon chip microphotodiode arrays into the cat subretinal space. IEEE Trans Neural Syst Rehabil Eng 9(1):86–95

    Article  CAS  PubMed  Google Scholar 

  11. Cicione R, Shivdasani MN, Fallon JB, Luu CD, Allen PJ, Rathbone GD, Shepherd RK, Williams CE (2012) Visual cortex responses to suprachoroidal electrical stimulation of the retina: effects of electrode return configuration. J Neural Eng 9(3):036009

    Article  PubMed  Google Scholar 

  12. DeMarco PJ Jr, Yarbrough GL, Yee CW, McLean GY, Sagdullaev BT, Ball SL, McCall MA (2007) Stimulation via a subretinally placed prosthetic elicits central activity and induces a trophic effect on visual responses. Invest Ophthalmol Vis Sci 48(2):916–926

    Article  PubMed  Google Scholar 

  13. Eckmiller R (1997) Learning retina implants with epiretinal contacts. Ophthalmic Res 29(5):281–289

    Article  CAS  PubMed  Google Scholar 

  14. Fujikado T, Kamei M, Sakaguchi H, Kanda H, Morimoto T, Ikuno Y, Nishida K, Kishima H, Maruo T, Konoma K, Ozawa M, Nishida K (2011) Testing of Semichronically Implanted Retinal Prosthesis by Suprachoroidal-Transretinal Stimulation in Patients with Retinitis Pigmentosa. Invest Ophthalmol Vis Sci 52(7):4726–4733

    Article  PubMed  Google Scholar 

  15. Gekeler F, Kobuch K, Schwahn HN, Stett A, Shinoda K, Zrenner E (2004) Subretinal electrical stimulation of the rabbit retina with acutely implanted electrode arrays. Graefes Arch Clin Exp Ophthalmol 242(7):587–596

    Article  PubMed  Google Scholar 

  16. Humayun M, Propst R, de Juan E Jr, McCormick K, Hickingbotham D (1994) Bipolar surface electrical stimulation of the vertebrate retina. Arch Ophthalmol 112(1):110–116

    Article  CAS  PubMed  Google Scholar 

  17. Humayun MS, de Juan JE, Weiland JD, Dagnelie G, Katona S, Greenberg R, Suzuki S (1999) Pattern electrical stimulation of the human retina. Vision Res 39(15):2569–2576

    Article  CAS  PubMed  Google Scholar 

  18. Li L, Hayashida Y, Yagi T (2005) Temporal properties of retinal ganglion cell responses to local transretinal current stimuli in the frog retina. Vision Res 45(2):263–273

    Article  PubMed  Google Scholar 

  19. Margalit E, Maia M, Weiland JD, Greenberg RJ, Fujii GY, Torres G, Piyathaisere DV, O'Hearn TM, Liu W, Lazzi G, Dagnelie G, Scribner DA, de Juan E Jr, Humayun MS (2002) Retinal prosthesis for the blind. Surv Ophthalmol 47(4):335–356

    Article  PubMed  Google Scholar 

  20. Rizzo JF 3rd, Wyatt J, Humayun M, de Juan E, Liu W, Chow A, Eckmiller R, Zrenner E, Yagi T, Abrams G (2001) Retinal prosthesis: an encouraging first decade with major challenges ahead. Ophthalmology 108(1):13–14

    Article  PubMed  Google Scholar 

  21. Sachs HG, Schanze T, Wilms M, Rentzos A, Brunner U, Gekeler F, Hesse L (2005) Subretinal implantation and testing of polyimide film electrodes in cats. Graefes Arch Clin Exp Ophthalmol 243(5):464–468

    Article  PubMed  Google Scholar 

  22. Schwahn HN, Gekeler F, Kohler K, Kobuch K, Sachs HG, Schulmeyer F, Jakob W, Gabel VP, Zrenner E (2001) Studies on the feasibility of a subretinal visual prosthesis: data from Yucatan micropig and rabbit. Graefes Arch Clin Exp Ophthalmol 239(12):961–967

    Article  CAS  PubMed  Google Scholar 

  23. Stronks HC, Barry MP, Dagnelie G (2013) Electrically Elicited Visual Evoked Potentials in Argus II Retinal Implant Wearers. Invest Ophthalmol Vis Sci 54(6):3891–3901

    Article  PubMed Central  PubMed  Google Scholar 

  24. Walter P, Heimann K (2000) Evoked cortical potentials after electrical stimulation of the inner retina in rabbits. Graefes Arch Clin Exp Ophthalmol 238(4):315–318

    Article  CAS  PubMed  Google Scholar 

  25. Walter P, Kisvarday ZF, Gortz M, Alteheld N, Rossler G, Stieglitz T, Eysel UT (2005) Cortical activation via an implanted wireless retinal prosthesis. Invest Ophthalmol Vis Sci 46(5):1780–1785

    Article  PubMed  Google Scholar 

  26. Weiland JD, Cho AK, Humayun MS (2011) Retinal Prostheses: Current Clinical Results and Future Needs. Ophthalmology 118(11):2227–2237

    Article  PubMed  Google Scholar 

  27. Wong YT, Chen SC, Seo JM, Morley JW, Lovell NH, Suaning GJ (2009) Focal activation of the feline retina via a suprachoroidal electrode array. Vision Res 49(8):825–833

    Article  CAS  PubMed  Google Scholar 

  28. Zrenner E (2002) Will retinal implants restore vision? Science 295(5557):1022–1025

    Article  CAS  PubMed  Google Scholar 

  29. Zrenner E, Bartz-Schmidt KU, Benav H, Besch D, Bruckmann A, Gabel VP, Gekeler F, Greppmaier U, Harscher A, Kibbel S, Koch J, Kusnyerik A, Peters T, Stingl K, Sachs H, Stett A, Szurman P, Wilhelm B, Wilke R (2011) Subretinal electronic chips allow blind patients to read letters and combine them to words. Proc R Soc Lond B Biol Sci 278(1711):1489–1497

    Article  Google Scholar 

  30. Kanda H, Morimoto T, Fujikado T, Tano Y, Fukuda Y, Sawai H (2004) Electrophysiological studies of the feasibility of suprachoroidal-transretinal stimulation for artificial vision in normal and RCS rats. Invest Ophthalmol Vis Sci 45(2):560–566

    Article  PubMed  Google Scholar 

  31. Sakaguchi H, Fujikado T, Kanda H, Osanai M, Fang X, Nakauchi K, Ikuno Y, Kamei M, Ohji M, Yagi T, Tano Y (2004) Electrical stimulation with a needle-type electrode inserted into the optic nerve in rabbit eyes. Jpn J Ophthalmol 48(6):552–557

    Article  PubMed  Google Scholar 

  32. Brélen ME, De Potter P, Gersdorff M, Cosnard G, Veraart C, Delbeke J (2006) Intraorbital implantation of a stimulating electrode for an optic nerve visual prosthesis - Case report. J Neurosurg 104(4):593–597

    Article  PubMed  Google Scholar 

  33. Cai C, Li L, Li X, Chai X, Sun J, Lu Y, Sui X, Chen P, Ren Q (2009) Response properties of electrically evoked potential elicited by multi-channel penetrative optic nerve stimulation in rabbits. Doc Ophthalmol 118(3):191–204

    Article  PubMed  Google Scholar 

  34. Chai X, Li L, Wu K, Zhou C, Cao P, Ren Q (2008) C-Sight Visual Prostheses for the Blind. IEEE Eng Med Biol Mag 27(5):20–28

    Article  PubMed  Google Scholar 

  35. Fang X, Sakaguchi H, Fujikado T, Osanai M, Kanda H, Ikuno Y, Kamei M, Ohji M, Gan D, Choi J (2005) Direct stimulation of optic nerve by electrodes implanted in optic disc of rabbit eyes. Graefes Arch Clin Exp Ophthalmol 243(1):49–56

    Article  PubMed  Google Scholar 

  36. Li L, Cao P, Sun M, Chai X, Wu K, Xu X, Li X, Ren Q (2009) Intraorbital optic nerve stimulation with penetrating electrodes: in vivo electrophysiology study in rabbits. Graefes Arch Clin Exp Ophthalmol 247(3):349–361

    Article  PubMed  Google Scholar 

  37. Lu Y, Yan Y, Chai X, Ren Q, Chen Y, Li L (2013) Electrical stimulation with a penetrating optic nerve electrode array elicits visuotopic cortical responses in cats. J Neural Eng 10(3):036022

    Article  PubMed  Google Scholar 

  38. Sun J, Chen Y, Chai X, Ren Q, Li L (2013) Penetrating electrode stimulation of the rabbit optic nerve: parameters and effects on evoked cortical potentials. Graefes Arch Clin Exp Ophthalmol 251(11):2545–2554

    Article  PubMed  Google Scholar 

  39. Sun J, Lu Y, Cao P, Li X, Cai C, Chai X, Ren Q, Li L (2011) Spatiotemporal Properties of Multipeaked Electrically Evoked Potentials Elicited by Penetrative Optic Nerve Stimulation in Rabbits. Invest Ophthalmol Vis Sci 52(1):146–154

    Article  PubMed  Google Scholar 

  40. Veraart C, Raftopoulos C, Mortimer JT, Delbeke J, Pins D, Michaux G, Vanlierde A, Parrini S, Wanet-Defalque MC (1998) Visual sensations produced by optic nerve stimulation using an implanted self-sizing spiral cuff electrode. Brain Res 813(1):181–186

    Article  CAS  PubMed  Google Scholar 

  41. Veraart C, Wanet-Defalque MC, Gerard B, Vanlierde A, Delbeke J (2003) Pattern recognition with the optic nerve visual prosthesis. Artif Organs 27(11):996–1004

    Article  PubMed  Google Scholar 

  42. Shannon RV (1992) A model of safe levels for electrical stimulation. IEEE Trans Biomed Eng 39(4):424–426

    Article  CAS  PubMed  Google Scholar 

  43. Bonham BH, Litvak LM (2008) Current focusing and steering: modeling, physiology, and psychophysics. Hear Res 242(1-2):141–153

    Article  PubMed Central  PubMed  Google Scholar 

  44. Shivdasani MN, Fallon JB, Luu CD, Cicione R, Allen PJ, Morley JW, Williams CE (2012) Visual cortex responses to single- and simultaneous multiple-electrode stimulation of the retina: implications for retinal prostheses. Invest Ophthalmol Vis Sci 53(10):6291–6300

    Article  PubMed  Google Scholar 

  45. Shivdasani MN, Luu CD, Cicione R, Fallon JB, Allen PJ, Leuenberger J, Suaning GJ, Lovell NH, Shepherd RK, Williams CE (2010) Evaluation of stimulus parameters and electrode geometry for an effective suprachoroidal retinal prosthesis. J Neural Eng 7(3):036008

    Article  PubMed  Google Scholar 

  46. Horsager A, Boynton GM, Greenberg RJ, Fine I (2011) Temporal Interactions during Paired-Electrode Stimulation in Two Retinal Prosthesis Subjects. Invest Ophthalmol Vis Sci 52(1):549–557

    Article  PubMed Central  PubMed  Google Scholar 

  47. Wilke R, Gabel VP, Sachs H, Schmidt KUB, Gekeler F, Besch D, Szurman P, Stett A, Wilhelm B, Peters T, Harscher A, Greppmaier U, Kibbel S, Benav H, Bruckmann A, Stingl K, Kusnyerik A, Zrenner E (2011) Spatial Resolution and Perception of Patterns Mediated by a Subretinal 16-Electrode Array in Patients Blinded by Hereditary Retinal Dystrophies. Invest Ophthalmol Vis Sci 52(8):5995–6003

    Article  PubMed  Google Scholar 

  48. Li M, Yan Y, Wang Q, Zhao H, Chai X, Sui X, Ren Q, Li L (2013) A simulation of current focusing and steering with penetrating optic nerve electrodes. J Neural Eng 10(6):066007

    Article  PubMed  Google Scholar 

  49. Snyder RL, Middlebrooks JC, Bonham BH (2008) Cochlear implant electrode configuration effects on activation threshold and tonotopic selectivity. Hear Res 235(1-2):23–38

    Article  PubMed Central  PubMed  Google Scholar 

  50. Grandjean PA, Mortimer JT (1986) Recruitment properties of monopolar and bipolar epimysial electrodes. Ann Biomed Eng 14(1):53–66

    Article  CAS  PubMed  Google Scholar 

  51. Popovic D, Gordon T, Rafuse VF, Prochazka A (1991) Properties of implanted electrodes for functional electrical stimulation. Ann Biomed Eng 19(3):303–316

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research is supported by the National Basic Research Program of China (973 Program, 2011CB707502); the National Natural Science Foundation of China (60971102, 61171174, 91120304).

Conflict of interest

There is no conflict of interest for any author. Authors have no proprietary interest in the material described in the article

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liming Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, P., Sun, J., Yan, Y. et al. Properties of electrically evoked potentials activated by optic nerve stimulation with penetrating electrodes of different modes in rabbits. Graefes Arch Clin Exp Ophthalmol 253, 2171–2180 (2015). https://doi.org/10.1007/s00417-015-3121-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-015-3121-0

Keywords

Navigation