Skip to main content

Advertisement

Log in

A new locus in chromosome 2q37-qter is associated with posterior polar cataract

  • Pathology
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To study the genetic basis of autosomal dominant posterior polar cataracts in two Chinese pedigrees.

Materials and methods

Peripheral blood samples were collected and genomic DNA was isolated. A genome-wide scan, using microsatellite markers at approximately 10-cm intervals and additional microsatellite markers for the positive region, was performed. Haplotype data were processed using Cyrillic software (version 2.1) to define the region of the disease gene. Mutation analysis was carried out for candidate genes. Sequencing data were analyzed with the software Sequence Scanner v1.0.

Results

A maximum two-point LOD score (Z max) of 2.53 and 2.03 was obtained at marker D2S125 with recombination θ = 0.00 in the two families. The possible disease genes were located at approximately 8.44-cM between the marker D2S125 and the terminal of chromosome 2q, namely, 2q37-qter. Candidate genes, such as Gamma-crystallins (CRYGA-D), septin 2 (SEPT2), aquaporin 12B (AQP12B), and chemokine orphan receptor 7 (CXCR7), were sequenced but no causative mutations were found.

Conclusions

Our results suggest that an unidentified gene in chromosome 2q37-qter is associated with posterior polar cataract, which may have an implication in understanding the genetic and molecular mechanisms of cataracts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gilbert CE, Canovas R, Haqan M, Rao S, Foster A (1993) Causes of childhood blindness: results from west Africa, south India and Chile. Eye 7(Pt 1):184–188

    Article  PubMed  Google Scholar 

  2. Francis P, Berry V, Bhattacharya S, Moore A (2000) Congenital progressive polymorphic cataract caused by a mutation in the major intrinsic protein of the lens, MIP (AQP0). Br J Ophthalmol 84(12):1376–1379

    Article  PubMed  CAS  Google Scholar 

  3. Cui X, Gao L, Jin Y, Zhang Y, Bai J, Feng G, Gao W, Liu P, He L, Fu S (2007) The E233del mutation in BFSP2 causes a progressive autosomal dominant congenital cataract in a Chinese family. Mol Vis 13:2023–2029

    PubMed  CAS  Google Scholar 

  4. Gao L, Qin W, Cui H, Feng G, Liu P, Gao W, Ma L, Li P, He L, Fu S (2005) A novel locus of coralliform cataract mapped to chromosome 2p24-pter. J Hum Genet 50(6):305–310

    Article  PubMed  CAS  Google Scholar 

  5. Zhang Z, Zhong W, Hall MJ, Kurre P, Spencer D, Skinner A, O’Neill S, Xia Z, Rosenbaum JT (2009) CXCR4 but not CXCR7 is mainly implicated in ocular leukocyte trafficking during ovalbumin-induced acute uveitis. Exp Eye Res 89(4):522–531

    Article  PubMed  CAS  Google Scholar 

  6. Al-ghoul KJ, Novak LA, Kuszak JR (1998) The structure of posterior subcapsular cataracts in the Royal College of Surgeons (RCS) rats. Exp Eye Res 67(2):163–177

    Article  PubMed  CAS  Google Scholar 

  7. Pras E, Mahler O, Kumar V, Frydman M, Gefen N, Pras E, Hejtmancik JF (2006) A new locus for autosomal dominant posterior polar cataract in Moroccan Jews maps to chromosome 14q22-23. J Med Genet 43(10):e50

    Article  PubMed  CAS  Google Scholar 

  8. Jhas S, Ciura S, Jasmin SB, Dong ZF, Liamosas E, Theriault FM, Joachim K, Tang YM, Liu LR, Liu JS, Stifani S (2006) Hes6 inhibits astrocyte differentiation and promotes neurogenesis through different mechanisms. J Neurosci 26(43):11061–11071

    Article  PubMed  CAS  Google Scholar 

  9. Geyer DD, Spence MA, Johannes M, Flodman P, Clancy KP, Berry R, Sparkes RS, Jonsen MD, Isenberg SJ, Bateman JB (2006) Novel single-base deletional mutation in major intrinsic protein (MIP) in autosomal dominant cataract. Am J Ophthalmol 141(4):761–763

    Article  PubMed  CAS  Google Scholar 

  10. Burdon KP, McKay JD, Wirth MG, Russell-Eggit M, Bhatti S, Ruddle JB, Dimasi D, Machey DA, Craig JE (2006) The PITX3 gene in posterior polar congenital cataract in Australia. Mol Vis 12:367–371

    PubMed  CAS  Google Scholar 

  11. Ionides ACW, Berry V, MacKay DS, Moore AT, Bhattacharya SS, Shiels A (1997) A locus for autosomal dominant posterior polar cataract on chromosome 1p. Hum Mol Genet 6(1):47–51

    Article  PubMed  CAS  Google Scholar 

  12. Eshagian J (1982) Human posterior subcapsular cataracts. Trans Ophthalmol Soc U K 102(Pt 3):364–368

    PubMed  Google Scholar 

  13. Gramantieri L, Giovannini C, Lanzi A, Chieco P, Ravaioli M, Venturi A, Grazi GL, Bolondi L (2007) Aberrant Notch3 and Notch4 expression in human hepatocellular carcinoma. Liver Int 27(7):997–1007

    Article  PubMed  CAS  Google Scholar 

  14. Yamada K, Tomita HA, Kanazawa S, Mera A, Amemiya T, Niikawa N (2000) Genetically distinct autosomal dominant posterior polar cataract in a four-generation Japanese family. Am J Ophthalmol 129(2):159–165

    Article  PubMed  CAS  Google Scholar 

  15. Heesen M, Berman MA, Charest A, Housman D, Gerard C, Dorf ME (1998) Cloning and chromosomal mapping of an orphan chemokine receptor: mouse RDC1. Immunogenetics 47(5):364–370

    Article  PubMed  CAS  Google Scholar 

  16. Tripathi V, Verma R, Dinda A, Malhotra N, Kaur J, Luthra K (2008) Differential expression of RDC1/CXCR7 in the human placenta. J Clin Immunol 29(3):379–386

    Article  PubMed  Google Scholar 

  17. Hall LR, Diaconu E, Patel R, Pearlman E (2001) CXC chemokine receptor 2 but not C-C chemokine receptor 1 expression is essential for neutrophil recruitment to the cornea in helminth-mediated keratitis (river blindness). J Immunol 166(6):4035–4041

    PubMed  CAS  Google Scholar 

  18. Varadaraj K, Kumari SS, Patil R, Wax MB, Mathias RT (2008) Functional characterization of a human aquaporin 0 mutation that leads to a congenital dominant lens cataract. Exp Eye Res 87(1):9–21

    Article  PubMed  CAS  Google Scholar 

  19. Kinoshita M, Noda M (2001) Roles of septins in the mammalian cytokinesis machinery. Cell Struct Funct 26(6):667–670

    Article  PubMed  CAS  Google Scholar 

  20. Kinoshita M, Kumar S, Mizoguchi A, Ide C, Kinoshita A, Haraguchi T, Hiraoka Y, Noda M (1997) Nedd5, a mammalian septin, is a novel cytoskeletal component interacting with actin-based structures. Genes Dev 11:1535–1547

    Article  PubMed  CAS  Google Scholar 

  21. Diez-Roux G, Banfi S, Sultan M, Geffers L, Anand S (2011) A high-resolution anatomical atlas of the transcriptome in the mouse embryo. PLoS Biol 9(1):e1000582

    Article  PubMed  CAS  Google Scholar 

  22. Boone M, Deen PM (2009) Congenital nephrogenic diabetes insipidus: what can we learn from mouse models? Exp Physiol 94(2):186–190

    Article  PubMed  CAS  Google Scholar 

  23. Itoh T, Rai T, Kuwahara M, Ko SBH, Uchida S, Sasaki S, Ishibashi K (2005) Identification of a novel aquaporin, AQP12, expressed in pancreatic acinar cells. Biochem Biophys Res Commun 330(3):832–838

    Article  PubMed  CAS  Google Scholar 

  24. Gade W, Robinson B (2006) CLS meets the aquaporin family: clinical cases involving aquaporin systems. Clin Lab Sci 19(2):80–89

    PubMed  Google Scholar 

  25. Ruiz-Ederra J, Verkman AS (2006) Accelerated cataract formation and reduced lens epithelial water permeability in aquaporin-1-deficient mice. Invest Ophthalmol Vis Sci 47(9):3960–3967

    Article  PubMed  Google Scholar 

  26. Bateman JB, Jobannes M, Flodman P, Geyer DD, Clancy KP, Heinzmann C, Kojis T, Berry R (2000) A new locus for autosomal dominant cataract on chromosome 12q13. Invest Ophthalmol Vis Sci 41(9):2665–2670

    PubMed  CAS  Google Scholar 

  27. Shiels A, Bassnett S, Varadaraj K, Mathias R, Al-Ghoul K, Kuszak J, Donoviel D, Lilleberg S, Friedrich G, Zambrowicz B (2001) Optical dysfunction of the crystalline lens in aquaporin-0-deficient mice. Physiol Genomics 7(2):179–186

    PubMed  CAS  Google Scholar 

  28. Nandrot E, Slingsby C, Basak A, Cherif-Chefchaoun M, Benazzouz B, Hajaji Y, Boutayeb S, Gribouval O, Arbogast L, Berraho A, Abitbol M, Hilal L (2003) Gamma-D crystallin gene (CRYGD) mutation causes autosomal dominant congenital cerulean cataracts. J Med Genet 40(4):262–267

    Article  PubMed  CAS  Google Scholar 

  29. Xu WZ, Zheng S, Xu SJ, Huang W, Yao K, Zhang SZ (2004) Autosomal dominant coralliform cataract related to a missense mutation of the gammaD-crystallin gene. Chin Med J (Engl) 117(5):727–732

    CAS  Google Scholar 

Download references

Acknowledgements

We thank the family members involved in the study for taking part in the study.

Declaration of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ouyang, S., Gao, L., Zhang, L. et al. A new locus in chromosome 2q37-qter is associated with posterior polar cataract. Graefes Arch Clin Exp Ophthalmol 250, 907–913 (2012). https://doi.org/10.1007/s00417-011-1781-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-011-1781-y

Keywords

Navigation