Skip to main content

Advertisement

Log in

Differential Expression of RDC1/CXCR7 in the Human Placenta

  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

Introduction

Chemokine receptor expression by human trophoblast and other placental cells have important implications for understanding the regulation of placental growth, development, and their role in maternofetal HIV transmission. CXCR7, now a deorphanized G protein coupled receptor that has been recently shown to bind to the ligands ITAC and CXCL12 has been proposed to act as a co-receptor for HIV-1, HIV-2, and SIV strains. The differential expression of CXCR7 in the human placenta is not yet reported.

Methods

The expression of CXCR7 was studied in 45 different human placental tissues, of which 20 were from early placental tissues (8–10 week old) obtained from medically terminated pregnancies and 25 were placenta from normal term deliveries.

Results

Immunohistochemistry and RT-PCR analysis revealed a greater expression of CXCR7 in term human placenta as compared to the early stage. This was further confirmed by real-time PCR.

Conclusion

Our study reveals, for the first time, the differential expression of CXCR7 in early (8–10 weeks) and term human placenta. The precise role of CXCR7 in the human placenta needs to be determined. HIV vertical transmission is reported to occur mainly during the end stages of pregnancy. Our finding of increased CXCR7 expression in the term human placenta therefore warrants future studies to assess its role in the vertical transmission of HIV-1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Pierce K, Premont R, Lefkowitz R. Signalling seven-transmembrane receptors. Nat Rev Mol Cell Biol. 2002;3:639–50. doi:10.1038/nrm908.

    Article  PubMed  CAS  Google Scholar 

  2. Fredriksson R, Lagerström M, Lundin L, Schiöth H. The G-protein-coupled receptors in the human genome form five main families: phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol. 2003;63:1256–72. doi:10.1124/mol.63.6.1256.

    Article  PubMed  CAS  Google Scholar 

  3. Joost P, Methner A (2002) Phylogenetic analysis of 277 human G-protein-coupled receptors as a tool for the prediction of orphan receptor ligands. Genome Biol 3, RESEARCH0063 1–63 6.

    Google Scholar 

  4. Thelen M. Dancing to the tune of chemokines. Nat Immunol. 2001;2:129–34. doi:10.1038/84224.

    Article  PubMed  CAS  Google Scholar 

  5. Balabanian K, Lagane B, Infantino S, Chow K, Harriague J, Moepps B, et al. The chemokine SDF-1/CXCL12 binds to and signals through the orphan receptor RDC1 in T lymphocytes. Biol Chem Epub. 2005;280:35760–6. doi:10.1074/jbc.M508234200.

    Article  CAS  Google Scholar 

  6. Heesen M, Berman M, Charest A, Housman D, Gerard C, Dorf M. Cloning and chromosomal mapping of an orphan chemokine receptor: mouse RDC1. Immunogenetics 1998;47:364–70. doi:10.1007/s002510050371.

    Article  PubMed  CAS  Google Scholar 

  7. Moepps B, Nuesseler E, Braun M, Gierschik P. A homolog of the human chemokine receptor CXCR1 is expressed in the mouse. Mol Immunol. 2006;43:897–914. doi:10.1016/j.molimm.2005.06.043.

    Article  PubMed  CAS  Google Scholar 

  8. Parry S, Zhang J, Koi H, Arechavaleta-Velasco F, Elovitz M. Transcytosis of human immunodeficiency virus 1 across the placenta is enhanced by treatment with tumour necrosis factor alpha. J Gen Virol. 2006;87:2269–78. doi:10.1099/vir.0.81071-0.

    Article  PubMed  CAS  Google Scholar 

  9. Douglas G, Fry G, Thirkill T, Holmes E, Hakim H, Jennings M, et al. Cell-mediated infection of human placental trophoblast with HIV in vitro. AIDS Res Hum Retroviruses. 1991;7:735–40.

    Article  PubMed  CAS  Google Scholar 

  10. Behbahani H, Popek E, Garcia P, Andersson J, Spetz AL, Landay A, et al. Up-regulation of CCR5 expression in the placenta is associated with human immunodeficiency virus-1 vertical transmission. Am J Pathol. 2000;157:1811–8.

    PubMed  CAS  Google Scholar 

  11. Vidricaire G, Tremblay M. For a better understanding of the mechanisms involved in vertical transmission of HIV. Med Sci (Paris). 2004;20:784–7.

    Google Scholar 

  12. Kumar A, Kumar S, Dinda A, Luthra K. Differential expression of CXCR4 receptor in early and term human placenta. Placenta 2004;25:347–51. doi:10.1016/j.placenta.2003.10.003.

    Article  PubMed  CAS  Google Scholar 

  13. Shimizu N, Soda Y, Kanbe K, Liu H, Mukai R, Kitamura T, et al. (2000) A Putative G Protein-Coupled Receptor, RDC1, Is a Novel Coreceptor for Human and Simian Immunodeficiency Viruses J virol 74, 619–626

  14. Infantino S, Moepps B, Thelen M. Expression and regulation of the orphan receptor RDC1 and its putative ligand in human dendritic and B cells. J Immunol. 2006;176:2197–207.

    PubMed  CAS  Google Scholar 

  15. Nabi G, Seth A, Dinda A, Gupta N. Computer based receptogram approach: an objective way of assessing immunohistochemistry of androgen receptor staining and its correlation with hormonal response in metastatic carcinoma of prostate. J Clin Pathol. 2004;57:146–50. doi:10.1136/jcp.2003.010520.

    Article  PubMed  CAS  Google Scholar 

  16. Burns J, Summers B, Wang Y, Melikian A, Berahovich R. A novel chemokine receptor for SDF-1 and 1-TAC involved in cell survival, cell adhesion, and tumor development. J Exp Med. 2006;203:2201–13. doi:10.1084/jem.20052144.

    Article  PubMed  CAS  Google Scholar 

  17. Libert F, Parmentier M, Lefort A, Dumont JE, Vassart G. Complete nucleotide sequence of a putative Gprotein coupled receptor: RDC1. Nucleic Acids Res. 1990;18:1917. doi:10.1093/nar/18.7.1917.

    Article  PubMed  CAS  Google Scholar 

  18. Libert F, Passage E, Parmentier M, Simons MJ, Vassart G, Mattei MG. Chromosomal mapping of A1 and A2 adenosine receptors, VIP receptor, and a new subtype of serotonin receptor. Genomics 1991;11:225–7. doi:10.1016/0888-7543(91)90125-X.

    Article  PubMed  CAS  Google Scholar 

  19. Cook JS, Wolsing DH, Lameh J, Olson CA, Correa PE, Sadee W, et al. Characterization of the RDC1 gene which encodes the canine homolog of a proposed human VIP receptor. Expression does not correlate with an increase in VIP binding sites. FEBS Lett. 1992;300:149–52. doi:10.1016/0014-5793(92)80184-I.

    Article  PubMed  CAS  Google Scholar 

  20. Nagata S, Ishihara T, Robberecht P, Libert F, Parmentier M, Christophe J, et al. RDC1 may not be VIP receptor. Trends Pharmacol Sci. 1992;13:102–3. doi:10.1016/0165-6147(92)90037-7.

    Article  PubMed  CAS  Google Scholar 

  21. Autelitano DJ. Cardiac expression of genes encoding putative adrenomedullin/calcitonin gene-related peptide receptors. Biochem Biophys Res Commun. 1998;250:689–93. doi:10.1006/bbrc.1998.9375.

    Article  PubMed  CAS  Google Scholar 

  22. Raggo C, Ruhl R, McAllister S, Koon H, Dezube BJ, Fruh K, et al. Novel cellular genes essential for transformation of endothelial cells by Kaposi’s sarcoma-associated herpesvirus. Cancer Res. 2005;65:5084–95. doi:10.1158/0008-5472.CAN-04-2822.

    Article  PubMed  CAS  Google Scholar 

  23. Miao Z, Luker KE, Summers BC, Berahovich R, Bhojani MS, Rehemtulla A, et al. CXCR7 (RDC1) promotes breast and lung tumor growth in vivo and is expressed on tumor-associated vasculature. Proc Natl Acad Sci USA. 2007b;104:15735–40. doi:10.1073/pnas.0610444104.

    Article  PubMed  CAS  Google Scholar 

  24. Goldmann T, Dromann D, Radtke J, Marwitz S, Lang DS, Schultz H, et al. CXCR7 transcription in human non-small cell lung cancer and tumor-free lung tissues; possible regulation upon chemotherapy. Virchows Arch. 2008;452:347–8. doi:10.1007/s00428-008-0579-8.

    Article  PubMed  Google Scholar 

  25. Wang J, Shiozawa Y, Wang J, Wang Y, Jung Y, Pienta KJ, et al. The role of CXCR7/RDC1 as a chemokine receptor for CXCL12/SDF-1 in prostate cancer. J Biol Chem. 2008;283:4283–94. doi:10.1074/jbc.M707465200.

    Article  PubMed  CAS  Google Scholar 

  26. Schutyser E, Su Y, Yu Y, Gouwy M, Zaja-Milatovic S, Van DJ, et al. Hypoxia enhances CXCR4 expression in human microvascular endothelial cells and human melanoma cells. Eur Cytokine Netw. 2007;18:11–22.

    Google Scholar 

  27. Jones SW, Brockbank SM, Mobbs ML, Le Good NJ, Soma-Haddrick S, Heuze AJ, et al. The orphan G-protein coupled receptor RDC1: evidence for a role in chondrocyte hypertrophy and articular cartilage matrix turnover. Osteoarthr Cartil. 2006;14(6):597–608, Jun.

    Article  PubMed  CAS  Google Scholar 

  28. Bosco MC, Puppo M, Santangelo C, Anfosso L, Pfeffer U, Fardin P, et al. Hypoxia modifies the transcriptome of primary human monocytes: modulation of novel immune-related genes and identification of CC-chemokine ligand 20 as a new hypoxia-inducible gene. J Immunol. 2006;177(3):1941–55.

    PubMed  CAS  Google Scholar 

  29. Mazzinghi B, Ronconi E, Lazzeri E, Sagrinati C, Ballerini L, Angelotti ML, et al. Essential but differential role forCXCR4 and CXCR7 in the therapeutic homing of human renal progenitor cells. J Exp Med. 2008;205:479–90. doi:10.1084/jem.20071903.

    Article  PubMed  CAS  Google Scholar 

  30. Arias RA, Munoz LD, Munoz-Fernandez MA. Transmission of HIV-1 infection between trophoblast placental cells and T-cells take place via an LFA-1-mediated cell to cell contact. Virology 2003;307:266–77. doi:10.1016/S0042-6822(02)00040-5.

    Article  PubMed  CAS  Google Scholar 

  31. Schwartz DA, Nahmias AJ. Human immunodeficiency virus and the placenta. Current concepts of vertical transmission in relation to other viral agents. Ann Clin Lab Sci. 1991;21:264–74.

    PubMed  CAS  Google Scholar 

  32. Wabwire-Mangen F, Gray RH, Mmiro FA, Ndugwa C, Abramowsky C, Wabinga H, et al. Placental membrane inflammation and risks of maternal-to-child transmission of HIV-1 in Uganda. J Acquir Immune Defic Syndr. 1999;22:379–85.

    PubMed  CAS  Google Scholar 

  33. Munoz-Fernandez MA, Navarro J, Garcia A, Punzon C, Fernandez-Cruz E, Fresno M. Replication of human immunodeficiency virus-1 in primary human T cells is dependent on the autocrine secretion of tumor necrosis factor through the control of nuclear factor-kappa B activation. J Allergy Clin Immunol. 1997;100:838–45. doi:10.1016/S0091-6749(97)70282-3.

    Article  PubMed  CAS  Google Scholar 

  34. Raghupathy R. Th1-type immunity is incompatible with successful pregnancy. Immunol Today. 1997;18:478–82. doi:10.1016/S0167-5699(97)01127-4.

    Article  PubMed  CAS  Google Scholar 

  35. Moussa M, Mognetti B, Dubanchet S, Menu E, Roques P, Gras G, et al. Vertical transmission of HIV: parameters which might affect infection of placental trophoblasts by HIV-1: a review. Biomed Group on the Study of in Utero Transmission of HIV 1. Am J Reprod Immunol. 1999;41:312–9.

    PubMed  CAS  Google Scholar 

  36. Ishii M, Hayakawa S, Suzuki MK, Yoshino N, Honda M, Nishinarita S, et al. Expression of functional chemokine receptors of human placental cells. Am J Reprod Immunol. 2000;44:365–73. doi:10.1111/j.8755-8920.2000.440608.x.

    Article  PubMed  CAS  Google Scholar 

  37. Douglas GC, Thirkill TL, LaSalle J. Automated quantitation of cell-mediated HIV type 1 infection of human syncytiotrophoblast cells by fluorescence in situ hybridization and laser scanning cytometry. AIDS Res Hum Retroviruses. 2001;17:507–16. doi:10.1089/08892220151126562.

    Article  PubMed  CAS  Google Scholar 

  38. Dabis F, Msellati P, Dunn D, Lepage P, Newell ML, Peckham C, et al. Estimating the rate of mother-to-child transmission of HIV. Report of a workshop on methodological issues Ghent (Belgium) 17–20 February 1992. The Working Group on Mother-to-Child Transmission of HIV. AIDS 1993;7:1139–48. doi:10.1097/00002030-199308000-00027.

    Article  PubMed  CAS  Google Scholar 

  39. Blanche S, Mayaux MJ, Rouzioux C, Teglas JP, Firtion G, Monpoux F, et al. Relation of the course of HIV infection in children to the severity of the disease in their mothers at delivery. N Engl J Med. 1994;330:308–12. doi:10.1056/NEJM199402033300502.

    Article  PubMed  CAS  Google Scholar 

  40. Krivine A, Firtion G, Cao L, Francoual C, Henrion R, Lebon P. HIV replication during the first weeks of life. Lancet 1992;339:1187–9. doi:10.1016/0140-6736(92)91131-Q.

    Article  PubMed  CAS  Google Scholar 

  41. Luzuriaga K, McQuilken P, Alimenti A, Somasundaran M, Hesselton R, Sullivan JL. Early viremia and immune responses in vertical human immunodeficiency virus type 1 infection. J Infect Dis. 1993;167:1008–13.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are thankful to Mr. Rajiv Kumar and the members of the Department of Pathology, AIIMS, New Delhi. We are also thankful to our summer trainee students, Manish Gupta and Yash Chhabra for their assistance during the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalpana Luthra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tripathi, V., Verma, R., Dinda, A. et al. Differential Expression of RDC1/CXCR7 in the Human Placenta. J Clin Immunol 29, 379–386 (2009). https://doi.org/10.1007/s10875-008-9258-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-008-9258-4

Keywords

Navigation