Skip to main content

Advertisement

Log in

The effect of doxycycline temperature-sensitive hydrogel on inhibiting the corneal neovascularization induced by BFGF in rats

  • Cornea
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

To study the effect of doxycycline temperature-sensitive hydrogel (DTSH) on inhibiting the corneal neovascularization (NV) induced by the basic fibroblast growth factor (bFGF).

Methods

Corneal NV was induced by slow-release polymer pellets containing bFGF, using a rat corneal pocket model. After being implanted with bFGF pellets, the female Sprague–Dawley rats were randomly divided into seven groups (12 rats/group). The grouped rats were given topically normal saline solution and neutralized DTSH at a concentration of 0%, 0.01%, 0.05%, 0.1%, 0.5%, and 1% respectively, and treated for 6 consecutive days. After 6 days of treatment, the cornea was perfused with India ink. The length and area of the corneal vessel were measured and analyzed by Image Pro-Plus 5.1.

Results

Compared to the control group given saline solution, the study groups given DTSH at a concentration of 0.05%, 0.1%, 0.5%, and 1% showed significant reduction in the vessel length (respectively, 58%, 60%, 52%, and 37%) and the vessel area (respectively, 61%, 62%, 49%, and 39%) (p < 0.001). However, no such significant reduction was observed in the study group given 0.01% DTSH (p = 0.133 and 0.166 for vessel length and area respectively). Study groups given 0.05% and 0.1% DTSH showed better effects than groups given 0.01% and 1% DTSH with regard to reducing the vessel length and the vessel area (p < 0.05).

Conclusion

The study results showed that topical DTSH effectively inhibited corneal NV at the ideal concentration of 0.05% and 0.1%. Therefore, topical DTSH could be considered as an alternative treatment for the clinical management of corneal NV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Chang JH, Gabison EE, Kato T, Azar DT (2001) Corneal neovascularization. Curr Opin Ophthalmol 12:242–249

    Article  PubMed  CAS  Google Scholar 

  2. Lim P, Fuchsluger TA, Jurkunas UV (2009) Limbal stem cell deficiency and corneal neovascularization. Semin Ophthalmol 24:139–148

    Article  PubMed  Google Scholar 

  3. Murata M, Nakagawa M, Takahashi S (1997) Inhibitory effects of plasminogen fragment on experimentally induced neovascularization of rat corneas. Graefes Arch Clin Exp Ophthalmol 235:584–586

    Article  PubMed  CAS  Google Scholar 

  4. Kruse FE, Joussen AM, Rohrschneider K, Becker MD, Volcker HE (1998) Thalidomide inhibits corneal angiogenesis induced by vascular endothelial growth factor. Graefes Arch Clin Exp Ophthalmol 236:461–466

    Article  PubMed  CAS  Google Scholar 

  5. Joussen AM, Kruse FE, Volcker HE, Kirchhof B (1999) Topical application of methotrexate for inhibition of corneal angiogenesis. Graefes Arch Clin Exp Ophthalmol 237:920–927

    Article  PubMed  CAS  Google Scholar 

  6. Joussen AM, Germann T, Kirchhof B (1999) Effect of thalidomide and structurally related compounds on corneal angiogenesis is comparable to their teratological potency. Graefes Arch Clin Exp Ophthalmol 237:952–961

    Article  PubMed  CAS  Google Scholar 

  7. Klotz O, Park JK, Pleyer U, Hartmann C, Baatz H (2000) Inhibition of corneal neovascularization by alpha(v)-integrin antagonists in the rat. Graefes Arch Clin Exp Ophthalmol 238:88–93

    Article  PubMed  CAS  Google Scholar 

  8. Cursiefen C, Wenkel H, Martus P, Langenbucher A, Nguyen NX, Seitz B, Kuchle M, Naumann GO (2001) Impact of short-term versus long-term topical steroids on corneal neovascularization after non-high-risk keratoplasty. Graefes Arch Clin Exp Ophthalmol 239:514–521

    Article  PubMed  CAS  Google Scholar 

  9. Wu PC, Liu CC, Chen CH, Kou HK, Shen SC, Lu CY, Chou WY, Sung MT, Yang LC (2003) Inhibition of experimental angiogenesis of cornea by somatostatin. Graefes Arch Clin Exp Ophthalmol 241:63–69

    Article  PubMed  CAS  Google Scholar 

  10. Murata M, Shimizu S, Horiuchi S, Taira M (2006) Inhibitory effect of triamcinolone acetonide on corneal neovascularization. Graefes Arch Clin Exp Ophthalmol 244:205–209

    Article  PubMed  CAS  Google Scholar 

  11. Peyman GA, Kivilcim M, Morales AM, DellaCroce JT, Conway MD (2007) Inhibition of corneal angiogenesis by ascorbic acid in the rat model. Graefes Arch Clin Exp Ophthalmol 245:1461–1467

    Article  PubMed  CAS  Google Scholar 

  12. Bock F, Onderka J, Dietrich T, Bachmann B, Pytowski B, Cursiefen C (2008) Blockade of VEGFR3-signalling specifically inhibits lymphangiogenesis in inflammatory corneal neovascularisation. Graefes Arch Clin Exp Ophthalmol 246:115–119

    Article  PubMed  CAS  Google Scholar 

  13. Azar DT (2006) Corneal angiogenic privilege: angiogenic and antiangiogenic factors in corneal avascularity, vasculogenesis, and wound healing (an American Ophthalmological Society thesis). Trans Am Ophthalmol Soc 104:264–302

    PubMed  Google Scholar 

  14. Ma DH, Chen JK, Kim WS, Hao YX, Wu HC, Tsai RJ, Hwang DG, Zhang F (2001) Expression of matrix metalloproteinases 2 and 9 and tissue inhibitors of metalloproteinase 1 and 2 in inflammation-induced corneal neovascularization. Ophthalmic Res 33:353–362

    Article  PubMed  CAS  Google Scholar 

  15. Kvanta A, Sarman S, Fagerholm P, Seregard S, Steen B (2000) Expression of matrix metalloproteinase-2 (MMP-2) and vascular endothelial growth factor (VEGF) in inflammation-associated corneal neovascularization. Exp Eye Res 70:419–428

    Article  PubMed  CAS  Google Scholar 

  16. Sounni NE, Janssen M, Foidart JM, Noel A (2003) Membrane type-1 matrix metalloproteinase and TIMP-2 in tumor angiogenesis. Matrix Biol 22:55–61

    Article  PubMed  CAS  Google Scholar 

  17. Ma DH, Zhang F, Shi W, Yao JY, Hsiao CH, Wu HC, Kim WS, Hao YX, Hwang DG, Chen JK, Tsai RJ (2003) Expression of tissue inhibitor of metalloproteinase-4 in normal human corneal cells and experimental corneal neovascularization. Ophthalmic Res 35:199–207

    Article  PubMed  CAS  Google Scholar 

  18. Guerin C, Laterra J, Masnyk T, Golub LM, Brem H (1992) Selective endothelial growth inhibition by tetracyclines that inhibit collagenase. Biochem Biophys Res Commun 188:740–745

    Article  PubMed  CAS  Google Scholar 

  19. Sapadin AN, Fleischmajer R (2006) Tetracyclines: nonantibiotic properties and their clinical implications. J Am Acad Dermatol 54:258–265

    Article  PubMed  Google Scholar 

  20. Ralph RA (2000) Tetracyclines and the treatment of corneal stromal ulceration: a review. Cornea 19:274–277

    Article  PubMed  CAS  Google Scholar 

  21. Dursun D, Kim MC, Solomon A, Pflugfelder SC (2001) Treatment of recalcitrant recurrent corneal erosions with inhibitors of matrix metalloproteinase-9, doxycycline and corticosteroids. Am J Ophthalmol 132:8–13

    Article  PubMed  CAS  Google Scholar 

  22. Burns FR, Stack MS, Gray RD, Paterson CA (1989) Inhibition of purified collagenase from alkali-burned rabbit corneas. Invest Ophthalmol Vis Sci 30:1569–1575

    PubMed  CAS  Google Scholar 

  23. Smith VA, Cook SD (2004) Doxycycline-a role in ocular surface repair. Br J Ophthalmol 88:619–625

    Article  PubMed  CAS  Google Scholar 

  24. Dan L, Shi-long Y, Miao-li L, Yong-ping L, Hong-jie M, Ying Z, Xiang-gui W (2008) Inhibitory effect of oral doxycycline on neovascularization in a rat corneal alkali burn model of angiogenesis. Curr Eye Res 33:653–660

    Article  PubMed  Google Scholar 

  25. Aydin E, Kivilcim M, Peyman GA, Esfahani MR, Kazi AA, Sanders DR (2008) Inhibition of experimental angiogenesis of cornea by various doses of doxycycline and combination of triamcinolone acetonide with low-molecular-weight heparin and doxycycline. Cornea 27:446–453

    Article  PubMed  Google Scholar 

  26. Kenyon BM, Voest EE, Chen CC, Flynn E, Folkman J, D'Amato RJ (1996) A model of angiogenesis in the mouse cornea. Invest Ophthalmol Vis Sci 37:1625–1632

    PubMed  CAS  Google Scholar 

  27. York M, Steiling W (1998) A critical review of the assessment of eye irritation potential using the Draize rabbit eye test. J Appl Toxicol 18:233–240

    Article  PubMed  CAS  Google Scholar 

  28. Shan S, Lockhart AC, Saito WY, Knapp AM, Laderoute KR, Dewhirst MW (2001) The novel tubulin-binding drug BTO-956 inhibits R3230AC mammary carcinoma growth and angiogenesis in Fischer 344 rats. Clin Cancer Res 7:2590–2596

    PubMed  CAS  Google Scholar 

  29. Norrby K (2006) In vivo models of angiogenesis. J Cell Mol Med 10:588–612

    Article  PubMed  CAS  Google Scholar 

  30. Ziche M, Morbidelli L (2009) The corneal pocket assay. Methods Mol Biol 467:319–329

    Article  PubMed  CAS  Google Scholar 

  31. Tong S, Chen Q, Shan SQ, Dewhirst MW, Yuan F (2006) Quantitative comparison of the inhibitory effects of GW5638 and tamoxifen on angiogenesis in the cornea pocket assay. Angiogenesis 9:53–58

    Article  PubMed  CAS  Google Scholar 

  32. Cal K, Centkowska K (2008) Use of cyclodextrins in topical formulations: practical aspects. Eur J Pharm Biopharm 68:467–478

    Article  PubMed  CAS  Google Scholar 

  33. El-Kamel AH (2002) In vitro and in vivo evaluation of Pluronic F127-based ocular delivery system for timolol maleate. Int J Pharm 241:47–55

    Article  PubMed  CAS  Google Scholar 

  34. Chen WL, Lin CT, Lin NT, Tu IH, Li JW, Chow LP, Liu KR, Hu FR (2009) Subconjunctival injection of bevacizumab (avastin) on corneal neovascularization in different rabbit models of corneal angiogenesis. Invest Ophthalmol Vis Sci 50:1659–1665

    Article  PubMed  Google Scholar 

  35. Kim SW, Ha BJ, Kim EK, Tchah H, Kim TI (2008) The effect of topical bevacizumab on corneal neovascularization. Ophthalmology 15:e33–e38

    Article  Google Scholar 

  36. Erdurmus M, Totan Y (2007) Subconjunctival bevacizumab for corneal neovascularization. Graefes Arch Clin Exp Ophthalmol 245:1577–1579

    Article  PubMed  CAS  Google Scholar 

  37. Bock F, Konig Y, Kruse F, Baier M, Cursiefen C (2008) Bevacizumab (Avastin) eye drops inhibit corneal neovascularization. Graefes Arch Clin Exp Ophthalmol 246:281–284

    Article  PubMed  CAS  Google Scholar 

  38. Han YS, Lee JE, Jung JW, Lee JS (2009) Inhibitory effects of bevacizumab on angiogenesis and corneal neovascularization. Graefes Arch Clin Exp Ophthalmol 247:541–548

    Article  PubMed  CAS  Google Scholar 

  39. Koenig Y, Bock F, Horn F, Kruse F, Straub K, Cursiefen C (2009) Short- and long-term safety profile and efficacy of topical bevacizumab (Avastin) eye drops against corneal neovascularization. Graefes Arch Clin Exp Ophthalmol 247:1375–1382

    Article  PubMed  CAS  Google Scholar 

  40. Saravia M, Zapata G, Ferraiolo P, Racca L, Berra A (2009) Anti-VEGF monoclonal antibody-induced regression of corneal neovascularization and inflammation in a rabbit model of herpetic stromal keratitis. Graefes Arch Clin Exp Ophthalmol 247:1409–1416

    Article  PubMed  CAS  Google Scholar 

  41. Vassileva PI, Hergeldzhieva TG (2009) Avastin use in high risk corneal transplantation. Graefes Arch Clin Exp Ophthalmol 247:1701–1706

    Article  PubMed  CAS  Google Scholar 

  42. Lamoreaux WJ, Fitzgerald ME, Reiner A, Hasty KA, Charles ST (1998) Vascular endothelial growth factor increases release of gelatinase A and decreases release of tissue inhibitor of metalloproteinases by microvascular endothelial cells in vitro. Microvasc Res 55:29–42

    Article  PubMed  CAS  Google Scholar 

  43. Bergers G, Brekken R, McMahon G, Vu TH, Itoh T, Tamaki K, Tanzawa K, Thorpe P, Itohara S, Werb Z, Hanahan D (2000) Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol 2:737–744

    Article  PubMed  CAS  Google Scholar 

  44. Hashimoto G, Inoki I, Fujii Y, Aoki T, Ikeda E, Okada Y (2002) Matrix metalloproteinases cleave connective tissue growth factor and reactivate angiogenic activity of vascular endothelial growth factor 165. J Biol Chem 277:36288–36295

    Article  PubMed  CAS  Google Scholar 

  45. Seedor JA, Perry HD, McNamara TF, Golub LM, Buxton DF, Guthrie DS (1987) Systemic tetracycline treatment of alkali-induced corneal ulceration in rabbits. Arch Ophthalmol 105:268–271

    PubMed  CAS  Google Scholar 

  46. Perry HD, Golub LM (1984) Beneficial effect of systemic tetracycline therapy in the treatment of noninfected corneal ulcers. Cornea 3:75

    Article  PubMed  CAS  Google Scholar 

  47. Perry HD, Kenyon KR, Lamberts DW, Foulks GN, Seedor JA, Golub LM (1986) Systemic tetracycline hydrochloride as adjunctive therapy in the treatment of persistent epithelial defects. Ophthalmology 93:1320–1322

    PubMed  CAS  Google Scholar 

  48. De Paiva CS, Corrales RM, Villarreal AL, Farley WJ, Li DQ, Stern ME, Pflugfelder SC (2006) Corticosteroid and doxycycline suppress MMP-9 and inflammatory cytokine expression, MAPK activation in the corneal epithelium in experimental dry eye. Exp Eye Res 83:526–535

    Article  PubMed  Google Scholar 

  49. De Paiva CS, Corrales RM, Villarreal AL, Farley W, Li DQ, Stern ME, Pflugfelder SC (2006) Apical corneal barrier disruption in experimental murine dry eye is abrogated by methylprednisolone and doxycycline. Invest Ophthalmol Vis Sci 47:2847–2856

    Article  PubMed  Google Scholar 

  50. Stone DU, Chodosh J (2004) Oral tetracyclines for ocular rosacea: an evidence-based review of the literature. Cornea 23:106–109

    Article  PubMed  Google Scholar 

  51. Culbertson WW, Huang AJ, Mandelbaum SH, Pflugfelder SC, Boozalis GT, Miller D (1993) Effective treatment of phlyctenular keratoconjunctivitis with oral tetracycline. Ophthalmology 100:1358–1366

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by the Natural Science Foundation of China (30772388), the Natural Science Foundation of Guangdong (7001678), the Research Foundation of Science and Technology Plan of Guangdong Province (2004B30901011), and Technological Project of Guangzhou City, China (2006Z3–E4091).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Liang.

Additional information

This paper doesn’t have a financial relationship with any organization. The authors have full control of all primary data, and they agree to allow Graefe's Archive for Clinical and Experimental Ophthalmology to review their data upon request.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su, W., Li, Z., Lin, M. et al. The effect of doxycycline temperature-sensitive hydrogel on inhibiting the corneal neovascularization induced by BFGF in rats. Graefes Arch Clin Exp Ophthalmol 249, 421–427 (2011). https://doi.org/10.1007/s00417-010-1539-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-010-1539-y

Keywords

Navigation