Skip to main content

Advertisement

Log in

Epidermal growth factor inhibits glycogen synthase kinase-3 (GSK-3) and β-catenin transcription in cultured ARPE-19 cells

  • Laboratory Investigation
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

Culture of retinal pigment epithelium (RPE) cells might be a future option in the therapy of various degenerative retinal diseases. However, the molecular changes which occur during in vitro expansion of RPE cells during culture are not fully elucidated. The aim of this study was to evaluate molecular changes in the RPE cell line ARPE-19 after stimulation with different growth factors.

Methods

Cultured ARPE-19 cells were stimulated for 72 hours with rh-EGF, rh-IGF-1, rh-VEGF or rh-bFGF, and transcriptional changes of the differentiation markers cytokeratin 18 and RPE65 and of the key molecules of the wnt pathway, β-catenin, and glycogen synthase kinase-3 (GSK-3) were evaluated by real time RT-PCR.

Results

We found a significant decrease of cytokeratin 18 and RPE65 transcription after stimulation with rh-EGF (0.47 ± 0.42 and 0.32 ± 0.57-fold, respectively; p < 0.05). A significant reduction of β-catenin and GSK-3 mRNA was found in ARPE-19 cells stimulated with rh-IGF-1 (0.61 ± 0.25 and 0.52 ± 0.02-fold, respectively) or rh-EGF (0.55 ± 0.19 and 0.76 ± 0.26-fold, respectively). No changes of β-catenin mRNA were observed after stimulation with rh-VEGF or bFGF.

Conclusion

Our data suggest an inhibition of the β-catenin-pathway in ARPE-19 cells by IGF-1 and EGF, suggesting that ARPE-19 cell proliferation is, at least in part, driven by the β-catenin pathway. Furthermore, induction of proliferation by EGF results in a loss of differentiation markers in these cells. Maintaining the RPE phenotype is still one of the main problems for RPE- transplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lamb TD, Pugh JEN (2004) Dark adaptation and the retinoid cycle of vision. Prog Retin Eye Res 23:307

    Article  PubMed  CAS  Google Scholar 

  2. Bok D (1993) The retinal pigment epithelium: aversatile partner in vision. J Cell Sci Suppl 17:189–195

    PubMed  CAS  Google Scholar 

  3. Binder S, Stolba U, Krebs I et al (2002) Transplantation of autologous retinal pigment epithelium in eyes with foveal neovascularisation resulting from age-related macular degeneration: a pilot study. Am J Ophthalmol 133:215–225

    Article  PubMed  Google Scholar 

  4. Gouras P, Algvere P (1996) Retinal cell transplantation in the macula: new techniques. Vision Res 36:4121–4125

    Article  PubMed  CAS  Google Scholar 

  5. Binder S, Krebs I, Hilgers RD, Abri A, Stolba U, Assadoulina A, Kellner L, Stanzel BV, Jahn C, Feichtinger H (2004) Outcome of transplantation of autologous retinal pigment epithelium in age-related macular degeneration: a prospective trial. Invest Ophthalmol Vis Sci 45:4151–4160

    Article  PubMed  Google Scholar 

  6. Kim KS, Tezel TH, Del Priore LV (1998) Minimum number of adult human retinal pigment epithelial cells required to establish a confluent monolayer in vitro. Curr Eye Res 17:962–969

    Article  PubMed  CAS  Google Scholar 

  7. Ishida M, Lui GM, Yamani A, Sugino IK, Zarbin MA (1998) Culture of human retinal pigment epithelial cells from peripheral scleral flap biopsies. Curr Eye Res 17:392–402

    Article  PubMed  CAS  Google Scholar 

  8. Zhu M, Provis JM, Penfold PL (1998) Isolation, culture and characteristics of human foetal and adult retinal pigment epithelium. Aust N Z J Ophthalmol 26(Suppl 1):S50–S52

    PubMed  Google Scholar 

  9. Hecquet C, Lefevre G, Valtink M, Engelmann K, Mascarelli F (2002) Activation and role of MAP kinase-dependent pathways in retinal pigment epithelial cells: ERK and RPE cell proliferation. Invest Ophthalmol Vis Sci 43:3091–3098

    PubMed  Google Scholar 

  10. Defoe DM, Grindstaff RD (2004) Epithermal growth factor stimulation of RPE cell survival: contribution of phosphatidylinositol 3-linase and mitogen- activated protein kinase pathways. Exp Eye Res 79:51–59

    Article  PubMed  CAS  Google Scholar 

  11. Liou GI, Matragoon S, Samuel S, Behzadian MA, Tsai N, Gu X, Roon P, Hunt DM, Hunt RC, Caldwell RB, Marcus DM (2002) MAP kinase and β-catenin signalling in HGF induced RPE cell proliferation. Mol Vis 8:483–493

    PubMed  Google Scholar 

  12. Jin M, Barron E, He S, Ryan S, Hinton DR (2002) Regulation of RPE intercellular junction integrity and function by hepatocyte growth factor. Invest Ophthalmol Vis Sci 43:2782–2790

    PubMed  Google Scholar 

  13. Dale TC (1998) Signal transduction by the wnt family ligands. Biochem J 329:209–223

    PubMed  CAS  Google Scholar 

  14. Doble BW, Woodgett JR (2003) GSK-3: tricks of the trade for a multitasking kinase. J Cell Sci 116:1175–1186

    Article  PubMed  CAS  Google Scholar 

  15. Cross DAE, Alessi DR, Vandenheede JR, McDowell H, Hundal HS, Cohen P (1994) The inhibition of glycogen synthase kinase-3 by insulin-like growth factor 1 in the rat skeletal muscle cell line L6 is blocked by wortmannin but not by rapamycin: evidence that wortmannin blocks activation of the mitogen-activated protein kinase pathway in L6 cells between Ras and Raf. Biochem J 303:21–26

    PubMed  CAS  Google Scholar 

  16. Eldar-Finkelman H, Seger R, Vandenheede JR, Krebs EG (1995) Inactivation of glycogen synthase kinase-3 by epidermal growth factor is mediated by mitogen-activated protein kinase/p90 ribosomal protein S6 kinase signaling pathway in NIH/3T3 cells. J Biol Chem 270:987–990

    Article  PubMed  CAS  Google Scholar 

  17. Bachelder RE, Yoon S, Franci C, Garcia de Herreros A, Mercurio AM (2005) Glycogen synthase kinase-3 is an endogenous inhibitor of Snail transcription: implications for the epithelial-mesenchymal transition. J Cell Biol 168:29–33

    Article  PubMed  CAS  Google Scholar 

  18. Mariner DJ, Davis MA, Reynolds AB (2003) EGFR signaling to p120-catenin through phosphorylation at Y228. J Cell Sci 117:1339–1350

    Article  Google Scholar 

  19. Hoschuetzky H, Aberle H, Kemler R (1994) β-catenin mediates the interaction of the cadherin-catenin complex with epidermal growth factor receptor. J Cell Biol 127:1375–1380

    Article  PubMed  CAS  Google Scholar 

  20. PE Applied Biosystems (2001) ABI prism 7700 sequence detection system: relative quantitation of gene expression. Applied Biosystems, Bulletin 2, pp 1–36

  21. Sharma RK, Orr WE, Schmitt AD, Johnson DA (2005) A functional profile of gene expression in ARPE-19 cells. BMC Ophthalmology 5:25

    Article  PubMed  Google Scholar 

  22. Kanuga N, Winton HL, Beauchene L, Koman A, Zerbib A, Halford S, Couraud P, Keegan D, Coffey P, Lund RD, Adamson P, Greenwood J (2002) Characterization of genetically modified human retinal pigment epithelial cells developed for in vitro and transplantation studies. Invest Ophthalmol Vis Sci 43:546–555

    PubMed  Google Scholar 

  23. Wang Q, Zhou Y, Wang X, Evers BM (2006) Glycogen synthase kinase-3 is a negative regulator of extracellular signal-regulated kinase. Oncogene 25:43–50

    PubMed  Google Scholar 

  24. Reya T, Clevers H (2005) Wnt signaling in stem cells and cancer. Nature 434:843–850

    Article  PubMed  CAS  Google Scholar 

  25. Casaroli-Marano RP, Pagan R, Vilaro S (1999) Epithelial-mesenchymal transition in proliferative vitreoretinopathy: intermediate filament protein expression in retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 40:2062–2072

    PubMed  CAS  Google Scholar 

  26. Thiery JP (2002) Epithelial-mesenchymal transitions in tumor progression. Nat Rev Cancer 2:442–454

    Article  PubMed  CAS  Google Scholar 

  27. Saika S, Kono-Saika S, Tanaka T, Yamanaka O, Ohnishi Y, Sato M, Muragaki Y, Ooshima A, Yoo J, Flanders KC, Roberts AB (2004) Smad3 is required for dedifferentiation of retinal pigment epithelium following retinal detachment in mice. Lab Invest 84:1245–1258

    Article  PubMed  CAS  Google Scholar 

  28. Shi Y, Massague J (2003) Mechanisms of TGF-β signaling from cell membrane to the nucleus. Cell 113:685–700

    Article  PubMed  CAS  Google Scholar 

  29. Ten Dijke P, Goumans MJ, Itoh F, Itoh S (2002) Regulation of cell proliferation by Smad proteins. J Cell Physiol 191:1–16

    Article  PubMed  CAS  Google Scholar 

  30. Fujimoto K, Sheng H, Shao J, Beauchamp RD (2001) Transforming growth factor-beta1 promotes invasiveness after cellular transformation with activated Ras in intestinal epithelial cells. Exp Cell Res 266:239–249

    Article  PubMed  CAS  Google Scholar 

  31. Grände M, Franzen A, Karlsson JO, Ericson LE, Heldin NE, Nilsson M (2002) Transforming growth factor-β and epidermal growth factor synergistically stimulate epithelial to mesenchymal transition (EMT) through a MEK-dependent mechanism in primary cultured pig thymocytes. J Cell Sci 115:4227–4236

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanne Binder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krugluger, W., Seidel, S., Steindl, K. et al. Epidermal growth factor inhibits glycogen synthase kinase-3 (GSK-3) and β-catenin transcription in cultured ARPE-19 cells. Graefes Arch Clin Exp Ophthalmol 245, 1543–1548 (2007). https://doi.org/10.1007/s00417-007-0635-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-007-0635-0

Keywords

Navigation