Skip to main content
Log in

Subthalamic deep brain stimulation affects heading perception in Parkinson’s disease

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) presents with visuospatial impairment and falls. It is critical to understand how subthalamic deep brain stimulation (STN DBS) modulates visuospatial perception. We hypothesized that DBS has different effects on visual and vestibular perception of linear motion (heading), a critical aspect of visuospatial navigation; and such effects are specific to modulated STN location. Two-alternative forced-choice experiments were performed in 14 PD patients with bilateral STN DBS and 19 age-matched healthy controls (HC) during passive en bloc linear motion and 3D optic-flow in immersive virtual reality measured vestibular and visual heading. Objective measure of perception with Weibull psychometric function revealed that PD has significantly lower accuracy [L: 60.71 (17.86)%, R: 74.82 (17.44)%] and higher thresholds [L: 16.68 (12.83), R: 10.09 (7.35)] during vestibular task in both directions compared to HC (p < 0.05). DBS significantly improved vestibular discrimination accuracy [81.40 (14.36)%] and threshold [4.12 (5.87), p < 0.05] in the rightward direction. There were no DBS effects on the slopes of vestibular psychometric curves. Visual heading perception was better than vestibular and it was comparable to HC. There was no significant effect of DBS on visual heading response accuracy or discrimination threshold (p > 0.05). Patient-specific DBS models revealed an association between change in vestibular heading perception and the modulation of the dorsal STN. In summary, DBS may have different effects on vestibular and visual heading perception in PD. These effects may manifest via dorsal STN putatively by its effects on the cerebellum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bloem BR, Grimbergen YAM, Cramer M et al (2001) Prospective assessment of falls in Parkinson’s disease. J Neurol 248:950–958. https://doi.org/10.1007/s004150170047

    Article  CAS  PubMed  Google Scholar 

  2. Bloem BR, Hausdorff JM, Visser JE, Giladi N (2004) Falls and freezing of gait in Parkinson’s disease: a review of two interconnected, episodic phenomena. Mov Disord 19:871–884. https://doi.org/10.1002/mds.20115

    Article  PubMed  Google Scholar 

  3. Davidsdottir S, Wagenaar R, Young D, Cronin-Golomb A (2008) Impact of optic flow perception and egocentric coordinates on veering in Parkinson’s disease. Brain 131:2882–2893. https://doi.org/10.1093/brain/awn237

    Article  PubMed  PubMed Central  Google Scholar 

  4. Young DE, Wagenaar RC, Lin C-C et al (2010) Visuospatial perception and navigation in Parkinson’s disease. Vision Res 50:2495–2504. https://doi.org/10.1016/j.visres.2010.08.029

    Article  PubMed  PubMed Central  Google Scholar 

  5. Seichepine DR, Neargarder S, Davidsdottir S et al (2015) Side and type of initial motor symptom influences visuospatial functioning in Parkinson’s disease. J Park Dis 5:75–83. https://doi.org/10.3233/JPD-140365

    Article  Google Scholar 

  6. Deuschl G, Schade-Brittinger C, Krack P et al (2006) A randomized trial of deep-brain stimulation for Parkinson’s disease. N Engl J Med 355:896–908. https://doi.org/10.1056/NEJMoa060281

    Article  CAS  PubMed  Google Scholar 

  7. Konczak J, Krawczewski K, Tuite P, Maschke M (2007) The perception of passive motion in Parkinson’s disease. J Neurol 254:655. https://doi.org/10.1007/s00415-006-0426-2

    Article  PubMed  Google Scholar 

  8. Wright WG, Gurfinkel V, King L, Horak F (2007) Parkinson’s disease shows perceptuomotor asymmetry unrelated to motor symptoms. Neurosci Lett 417:10–15. https://doi.org/10.1016/j.neulet.2007.02.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bronstein AM, Hood JD, Gresty MA, Panagi C (1990) Visual control of balance in cerebellar and parkinsonian syndromes. Brain 113:767–779. https://doi.org/10.1093/brain/113.3.767

    Article  PubMed  Google Scholar 

  10. Barbato L, Rinalduzzi S, Laurenti M et al (1994) Color VEPs in Parkinson’s disease. Electroencephalogr Clin Neurophysiol Potentials Sect 92:169–172. https://doi.org/10.1016/0168-5597(94)90057-4

    Article  CAS  Google Scholar 

  11. Armstrong RA (2011) Visual Symptoms in Parkinson’s Disease. Park Dis 2011:908306. https://doi.org/10.4061/2011/908306

  12. Harris MG, Carré G (2001) Is optic flow used to guide walking while wearing a displacing prism? Perception 30:811–818. https://doi.org/10.1068/p3160

    Article  CAS  PubMed  Google Scholar 

  13. Warren WHW Jr, Kay BA, Zosh WD et al (2001) Optic flow is used to control human walking. Nat Neurosci 4:213. https://doi.org/10.1038/84054

    Article  CAS  PubMed  Google Scholar 

  14. Kearns MJ, Warren WH, Duchon AP, Tarr MJ (2002) Path integration from optic flow and body senses in a homing task. Perception 31:349–374. https://doi.org/10.1068/p3311

    Article  PubMed  Google Scholar 

  15. Bertolini G, Wicki A, Baumann CR et al (2015) Impaired tilt perception in Parkinson’s disease: a central vestibular integration failure. PLoS ONE 10:e0124253. https://doi.org/10.1371/journal.pone.0124253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yousif N, Bhatt H, Bain PG et al (2016) The effect of pedunculopontine nucleus deep brain stimulation on postural sway and vestibular perception. Eur J Neurol 23:668–670. https://doi.org/10.1111/ene.12947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Beylergil SB, Ozinga S, Walker MF et al (2019) Vestibular heading perception in Parkinson’s disease. Prog Brain Res 249:307–319. https://doi.org/10.1016/bs.pbr.2019.03.034

    Article  PubMed  Google Scholar 

  18. Yakubovich S, Israeli-Korn S, Halperin O et al (2020) Visual self-motion cues are impaired yet overweighted during visual–vestibular integration in Parkinson’s disease. Brain Commun 2:fcaa035. https://doi.org/10.1093/braincomms/fcaa035

    Article  PubMed  PubMed Central  Google Scholar 

  19. Karimi M, Golchin N, Tabbal SD et al (2008) Subthalamic nucleus stimulation-induced regional blood flow responses correlate with improvement of motor signs in Parkinson disease. Brain 131:2710–2719. https://doi.org/10.1093/brain/awn179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. McNeely ME, Hershey T, Campbell MC et al (2011) Effects of deep brain stimulation of dorsal versus ventral subthalamic nucleus regions on gait and balance in Parkinson’s disease. J Neurol Neurosurg Psychiatry 82:1250–1255. https://doi.org/10.1136/jnnp.2010.232900

    Article  CAS  PubMed  Google Scholar 

  21. Hill KK, Campbell MC, McNeely ME et al (2013) Cerebral blood flow responses to dorsal and ventral STN DBS correlate with gait and balance responses in Parkinson’s disease. Exp Neurol 241:105–112. https://doi.org/10.1016/j.expneurol.2012.12.003

    Article  CAS  PubMed  Google Scholar 

  22. Rascol O, Sabatini U, Fabre N et al (1997) The ipsilateral cerebellar hemisphere is overactive during hand movements in akinetic parkinsonian patients. Brain 120:103–110. https://doi.org/10.1093/brain/120.1.103

    Article  PubMed  Google Scholar 

  23. Yu H, Sternad D, Corcos DM, Vaillancourt DE (2007) Role of hyperactive cerebellum and motor cortex in Parkinson’s disease. Neuroimage 35:222–233. https://doi.org/10.1016/j.neuroimage.2006.11.047

    Article  PubMed  Google Scholar 

  24. Moers-Hornikx VMP, Vles JSH, Tan SKH et al (2011) Cerebellar nuclei are activated by high-frequency stimulation of the subthalamic nucleus. Neurosci Lett 496:111–115. https://doi.org/10.1016/j.neulet.2011.03.094

    Article  CAS  PubMed  Google Scholar 

  25. Bremmer F, Klam F, Duhamel J-R et al (2002) Visual–vestibular interactive responses in the macaque ventral intraparietal area (VIP). Eur J Neurosci 16:1569–1586. https://doi.org/10.1046/j.1460-9568.2002.02206.x

    Article  PubMed  Google Scholar 

  26. Hoshi E, Tremblay L, Féger J et al (2005) The cerebellum communicates with the basal ganglia. Nat Neurosci 8:1491–1493. https://doi.org/10.1038/nn1544

    Article  CAS  PubMed  Google Scholar 

  27. Gu Y, DeAngelis GC, Angelaki DE (2007) A functional link between area MSTd and heading perception based on vestibular signals. Nat Neurosci 10:1038–1047. https://doi.org/10.1038/nn1935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shaikh AG, Straumann D, Palla A (2017) Motion illusion—evidence towards human vestibulo-thalamic projections. Cerebellum 16:656–663. https://doi.org/10.1007/s12311-017-0844-y

    Article  PubMed  PubMed Central  Google Scholar 

  29. Goetz CG, Tilley BC, Shaftman SR et al (2008) Movement disorder society-sponsored revision of the unified Parkinson’s disease rating scale (MDS-UPDRS): scale presentation and clinimetric testing results. Mov Disord 23:2129–2170. https://doi.org/10.1002/mds.22340

    Article  Google Scholar 

  30. Powell LE, Myers AM (1995) The activities-specific balance confidence (ABC) scale. J Gerontol Ser A 50A:M28–M34. https://doi.org/10.1093/gerona/50A.1.M28

    Article  CAS  Google Scholar 

  31. Jacobs JV, Horak FB, Tran VK, Nutt JG (2006) Multiple balance tests improve the assessment of postural stability in subjects with Parkinson’s disease. J Neurol Neurosurg Psychiatry 77:322–326. https://doi.org/10.1136/jnnp.2005.068742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wichmann FA, Hill NJ (2001) The psychometric function: I. Fitting, sampling, and goodness of fit. Percept Psychophys 63:1293–1313. https://doi.org/10.3758/BF03194544

    Article  CAS  PubMed  Google Scholar 

  33. Butson CR, Noecker AM, Maks CB, McIntyre CC (2007) StimExplorer: deep brain stimulation parameter selection software system. In: Sakas DE, Simpson BA (eds) Operative neuromodulation, vol 2. Neural networks surgery. Springer, Vienna, pp 569–574

    Chapter  Google Scholar 

  34. Noecker AM, Choi KS, Riva-Posse P et al (2018) StimVision software: examples and applications in subcallosal cingulate deep brain stimulation for depression. Neuromodulation Technol Neural Interface 21:191–196. https://doi.org/10.1111/ner.12625

    Article  Google Scholar 

  35. Hamani C, Florence G, Heinsen H et al (2017) Subthalamic nucleus deep brain stimulation: basic concepts and novel perspectives. eNeuro. https://doi.org/10.1523/ENEURO.0140-17.2017

    Article  PubMed  PubMed Central  Google Scholar 

  36. Cooke JD, Brown JD, Brooks VB (1978) Increased dependence on visual information for movement control in patients with Parkinson’s disease. Can J Neurol Sci J Can Sci Neurol 5:413–415. https://doi.org/10.1017/s0317167100024197

    Article  CAS  Google Scholar 

  37. Azulay J-P, Mesure S, Amblard B, Pouget J (2002) Increased visual dependence in Parkinson’s disease. Percept Mot Skills 95:1106–1114. https://doi.org/10.2466/pms.2002.95.3f.1106

    Article  PubMed  Google Scholar 

  38. Azulay J-P, Mesure S, Amblard B et al (1999) Visual control of locomotion in Parkinson’s disease. Brain 122:111–120

    Article  Google Scholar 

  39. Azulay J-P, Mesure S, Blin O (2006) Influence of visual cues on gait in Parkinson’s disease: contribution to attention or sensory dependence? J Neurol Sci 248:192–195. https://doi.org/10.1016/j.jns.2006.05.008

    Article  PubMed  Google Scholar 

  40. Putcha D, Ross RS, Rosen ML et al (2014) Functional correlates of optic flow motion processing in Parkinson’s disease. Front Integr Neurosci 8:57. https://doi.org/10.3389/fnint.2014.00057

    Article  PubMed  PubMed Central  Google Scholar 

  41. Beylergil SB, Petersen M, Gupta P et al (2021) Severity-dependent effects of Parkinson’s disease on perception of visual and vestibular heading. Mov Disord 36:360–369

    Article  Google Scholar 

  42. Shaikh AG, Meng H, Angelaki DE (2004) Multiple reference frames for motion in the primate cerebellum. J Neurosci 24:4491–4497. https://doi.org/10.1523/JNEUROSCI.0109-04.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Dieterich M, Bense S, Lutz S et al (2003) Dominance for vestibular cortical function in the non-dominant hemisphere. Cereb Cortex 13:994–1007. https://doi.org/10.1093/cercor/13.9.994

    Article  CAS  PubMed  Google Scholar 

  44. Kinsbourne M (1977) Hemi-neglect and hemisphere rivalry. Hemi-inattention and hemisphere specialization. Raven Press, New York, pp 41–49

    Google Scholar 

  45. Seemungal BM, Rizzo V, Gresty MA et al (2008) Posterior parietal rTMS disrupts human path integration during a vestibular navigation task. Neurosci Lett 437:88–92. https://doi.org/10.1016/j.neulet.2008.03.067

    Article  CAS  PubMed  Google Scholar 

  46. Kaski D, Quadir S, Nigmatullina Y et al (2016) Temporoparietal encoding of space and time during vestibular-guided orientation. Brain 139:392–403. https://doi.org/10.1093/brain/awv370

    Article  PubMed  Google Scholar 

  47. Montgomery P, Silverstein P, Wichmann R et al (1993) Spatial updating in Parkinson’s disease. Brain Cogn 23:113–126. https://doi.org/10.1006/brcg.1993.1050

    Article  CAS  PubMed  Google Scholar 

  48. Angelaki DE, Shaikh AG, Green AM, Dickman JD (2004) Neurons compute internal models of the physical laws of motion. Nature 430:560–564. https://doi.org/10.1038/nature02754

    Article  CAS  PubMed  Google Scholar 

  49. Shaikh AG, Green AM, Ghasia FF et al (2005) Sensory convergence solves a motion ambiguity problem. Curr Biol 15:1657–1662. https://doi.org/10.1016/j.cub.2005.08.009

    Article  CAS  PubMed  Google Scholar 

  50. Shaikh AG, Ghasia FF, Dickman JD, Angelaki DE (2005) Properties of cerebellar fastigial neurons during translation, rotation, and eye movements. J Neurophysiol 93:853–863. https://doi.org/10.1152/jn.00879.2004

    Article  PubMed  Google Scholar 

  51. Bertolini G, Ramat S, Bockisch CJ et al (2012) Is vestibular self-motion perception controlled by the velocity storage? Insights from patients with chronic degeneration of the vestibulo-cerebellum. PLoS ONE 7:e36763. https://doi.org/10.1371/journal.pone.0036763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bostan AC, Strick PL (2010) The cerebellum and basal ganglia are interconnected. Neuropsychol Rev 20:261–270. https://doi.org/10.1007/s11065-010-9143-9

    Article  PubMed  PubMed Central  Google Scholar 

  53. Bostan AC, Dum RP, Strick PL (2010) The basal ganglia communicate with the cerebellum. Proc Natl Acad Sci 107:8452–8456. https://doi.org/10.1073/pnas.1000496107

    Article  PubMed  PubMed Central  Google Scholar 

  54. Akbarian S, Grüsser O-J, Guldin WO (1992) Thalamic connections of the vestibular cortical fields in the squirrel monkey (Saimiri sciureus). J Comp Neurol 326:423–441. https://doi.org/10.1002/cne.903260308

    Article  CAS  PubMed  Google Scholar 

  55. Middleton FA, Strick PL (2000) Basal ganglia output and cognition: evidence from anatomical, behavioral, and clinical studies. Brain Cogn 42:183–200. https://doi.org/10.1006/brcg.1999.1099

    Article  CAS  PubMed  Google Scholar 

  56. Yakusheva TA, Blazquez PM, Chen A, Angelaki DE (2013) Spatiotemporal properties of optic flow and vestibular tuning in the cerebellar nodulus and uvula. J Neurosci 33:15145–15160. https://doi.org/10.1523/JNEUROSCI.2118-13.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by American Academy of Neurology Career Award (Shaikh), American Parkinson’s Disease Association George C Cotzias Memorial Fellowship (Shaikh), Dystonia Medical Research Foundation Research Grant (Shaikh), and philanthropic funds to the Department of Neurology at University Hospitals (The Allan Woll Fund and The Fox Fund). Dr. Shaikh has Penni and Stephen Weinberg Research Chair in Brain Health.

Funding

This work was supported by American Academy of Neurology Career Award (Shaikh), American Parkinson’s Disease Association George C Cotzias Memorial Fellowship (Shaikh), Dystonia Medical Research Foundation Research Grant (Shaikh), and philanthropic funds to the Department of Neurology at University Hospitals (The Allan Woll Fund). Dr. Shaikh has Penni and Stephen Weinberg Chair in Brain Health.

Author information

Authors and Affiliations

Authors

Contributions

SBB: collected data, conceptualized analysis, performed analysis, and written and edited manuscript; AN: performed analysis and edited manuscript; CCM: performed analysis and edited manuscript; MP: performed analysis and edited manuscript; PG: collected data and edited manuscript; CK: collected data and edited manuscript; SO: conceptualized analysis, performed analysis, and edited manuscript; MW: conceptualized analysis and project, and edited manuscript; AGS: conceptualized project, analysis, collected data, performed analysis, and written and edited manuscript.

Corresponding author

Correspondence to Aasef G. Shaikh.

Ethics declarations

Conflicts of interest

CCM is paid consultant for Boston Scientific Neuromodulation. CK has received honoraria from Medtronic Inc to serve as an advisor.

Data and code availability

Deidentified data and software codes will be made available to the interested party after preparing appropriate institutional agreements and approvals.

Ethics approval

Institutional Review Boards at Cleveland VA Medical Center and University Hospitals Cleveland Medical Center approved this study.

Consent to participate

The subjects signed informed consent form prior to participating in the study.

Consent to publish

Authors consented to publish their work. Patients consented to publish their deidentified data.

Supplementary Information

Below is the link to the electronic supplementary material.

415_2021_10616_MOESM1_ESM.tiff

Supplemental Fig. 1. Individual Weibull psychometric curves of HC for vestibular (solid line) and visual heading (dotted line) in the leftward (left half of the plot) and rightward heading direction (right half of the plot). Filled and open circles represent the subject’s percent correct responses in the vestibular and visual heading task, respectively. 75% threshold value, psychometric slope, as well as the goodness-of-fit (R2) value of each individual’s Weibull psychometric function are denoted and for each modality and heading direction (TIFF 5043 KB)

415_2021_10616_MOESM2_ESM.tiff

Supplemental Fig. 2. Individual Weibull psychometric curves of PD for vestibular (solid line) and visual heading (dotted line) in the leftward (left half of the plot) and rightward heading direction (right half of the plot). Psychometric curves in DBS-ON (red) and DBS-OFF (navy) conditions are plotted with average HC curves (black). Filled and open circles represent the subject’s percent correct responses in the vestibular and visual heading task, respectively. Dashed black horizontal line designates the 75% accuracy level. 75% threshold value, psychometric slope, as well as the goodness-of-fit (R2) value of each individual’s Weibull psychometric function are denoted and for each modality, DBS condition and heading direction (TIFF 3834 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beylergil, S.B., Noecker, A.M., Petersen, M. et al. Subthalamic deep brain stimulation affects heading perception in Parkinson’s disease. J Neurol 269, 253–268 (2022). https://doi.org/10.1007/s00415-021-10616-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-021-10616-4

Keywords

Navigation