National institute for health and care excellence: clinical guidelines; motor neurone disease: assessment and management (2016). In. national institute for health and care excellence: clinical guidelines. The National Institute of Health and Care Excellence (NICE), London. https://www.nice.org.uk/guidance/ng42
Cudkowicz M, Qureshi M, Shefner J (2004) Measures and markers in amyotrophic lateral sclerosis. NeuroRx 1(2):273–283. https://doi.org/10.1602/neurorx.1.2.273
Article
PubMed
PubMed Central
Google Scholar
Paganoni S, Cudkowicz M, Berry JD (2014) Outcome measures in amyotrophic lateral sclerosis clinical trials. Clin Investig (Lond) 4(7):605–618
CAS
Article
Google Scholar
Rutkove SB (2015) Clinical measures of disease progression in amyotrophic lateral sclerosis. Neurotherapeutics 12(2):384–393. https://doi.org/10.1007/s13311-014-0331-9
CAS
Article
PubMed
PubMed Central
Google Scholar
Cudkowicz ME, Titus S, Kearney M, Yu H, Sherman A, Schoenfeld D, Hayden D, Shui A, Brooks B, Conwit R, Felsenstein D, Greenblatt DJ, Keroack M, Kissel JT, Miller R, Rosenfeld J, Rothstein JD, Simpson E, Tolkoff-Rubin N, Zinman L, Shefner JM, Ceftriaxone Study I (2014) Safety and efficacy of ceftriaxone for amyotrophic lateral sclerosis: a multi-stage, randomised, double-blind, placebo-controlled trial. Lancet Neurol 13(11):1083–1091. https://doi.org/10.1016/S1474-4422(14)70222-4
CAS
Article
PubMed
PubMed Central
Google Scholar
Cudkowicz ME, van den Berg LH, Shefner JM, Mitsumoto H, Mora JS, Ludolph A, Hardiman O, Bozik ME, Ingersoll EW, Archibald D, Meyers AL, Dong Y, Farwell WR, Kerr DA, investigators E (2013) Dexpramipexole versus placebo for patients with amyotrophic lateral sclerosis (EMPOWER): a randomised, double-blind, phase 3 trial. Lancet Neurol 12(11):1059–1067. https://doi.org/10.1016/S1474-4422(13)70221-7
CAS
Article
Google Scholar
Meininger V, Genge A, van den Berg LH, Robberecht W, Ludolph A, Chio A, Kim SH, Leigh PN, Kiernan MC, Shefner JM, Desnuelle C, Morrison KE, Petri S, Boswell D, Temple J, Mohindra R, Davies M, Bullman J, Rees P, Lavrov A, Group NOGS (2017) Safety and efficacy of ozanezumab in patients with amyotrophic lateral sclerosis: a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Neurol 16(3):208–216. https://doi.org/10.1016/S1474-4422(16)30399-4
CAS
Article
PubMed
Google Scholar
Kolber MJ, Cleland JA (2005) Strength testing using hand-held dynamometry. Phys Therapy Rev 10(2):99–112. https://doi.org/10.1179/108331905X55730
Article
Google Scholar
Stark T, Walker B, Phillips JK, Fejer R, Beck R (2011) Hand-held dynamometry correlation with the gold standard isokinetic dynamometry: a systematic review. PM R J Injury Funct Rehabilit 3(5):472–479. https://doi.org/10.1016/j.pmrj.2010.10.025
Article
Google Scholar
Keating JL, Matyas TA (1996) The influence of subject and test design on dynamometric measurements of extremity muscles. Phys Ther 76(8):866–889. https://doi.org/10.1093/ptj/76.8.866a
CAS
Article
PubMed
Google Scholar
Lu TW, Hsu HC, Chang LY, Chen HL (2007) Enhancing the examiner’s resisting force improves the reliability of manual muscle strength measurements: comparison of a new device with hand-held dynamometry. J Rehabil Med 39(9):679–684. https://doi.org/10.2340/16501977-0107
Article
PubMed
Google Scholar
Wikholm JB, Bohannon RW (1991) Hand-held dynamometer measurements: tester strength makes a difference. J Orthop Sports Phys Ther 13(4):191–198. https://doi.org/10.2519/jospt.1991.13.4.191
CAS
Article
PubMed
Google Scholar
Lu TW, Chien HL, Chang LY, Hsu HC (2012) Enhancing the examiner’s resisting force improves the validity of manual muscle strength measurements: application to knee extensors and flexors. J Strength Cond Res 26(9):2364–2371. https://doi.org/10.1519/JSC.0b013e31823db080
Article
PubMed
Google Scholar
Beck M, Giess R, Wurffel W, Magnus T, Ochs G, Toyka KV (1999) Comparison of maximal voluntary isometric contraction and Drachman’s hand-held dynamometry in evaluating patients with amyotrophic lateral sclerosis. Muscle Nerve 22(9):1265–1270
CAS
Article
Google Scholar
Visser J, Mans E, de Visser M, van den Berg-Vos RM, Franssen H, de Jong JM, van den Berg LH, Wokke JH, de Haan RJ (2003) Comparison of maximal voluntary isometric contraction and hand-held dynamometry in measuring muscle strength of patients with progressive lower motor neuron syndrome. Neuromuscul Disord 13(9):744–750
CAS
Article
Google Scholar
Andres PL, Skerry LM, Munsat TL, Thornell BJ, Szymonifka J, Schoenfeld DA, Cudkowicz ME (2012) Validation of a new strength measurement device for amyotrophic lateral sclerosis clinical trials. Muscle Nerve 45(1):81–85. https://doi.org/10.1002/mus.22253
Article
PubMed
Google Scholar
Bui KL, Mathur S, Dechman G, Maltais F, Camp P, Saey D (2019) Fixed handheld dynamometry provides reliable and valid values for quadriceps isometric strength in people with chronic obstructive pulmonary disease: a multicenter study. Phys Ther. https://doi.org/10.1093/ptj/pzz059
Article
PubMed
Google Scholar
Kollock RO Jr, Onate JA, Van Lunen B (2010) The reliability of portable fixed dynamometry during hip and knee strength assessments. J Athl Train 45(4):349–356. https://doi.org/10.4085/1062-6050-45.4.349
Article
PubMed
PubMed Central
Google Scholar
Mentiplay BF, Perraton LG, Bower KJ, Adair B, Pua YH, Williams GP, McGaw R, Clark RA (2015) Assessment of lower limb muscle strength and power using hand-held and fixed dynamometry: a reliability and validity study. PLoS ONE 10(10):e0140822. https://doi.org/10.1371/journal.pone.0140822
CAS
Article
PubMed
PubMed Central
Google Scholar
Andres PL, Allred MP, Stephens HE, Proffitt Bunnell M, Siener C, Macklin EA, Haines T, English RA, Fetterman KA, Kasarskis EJ, Florence J, Simmons Z, Cudkowicz ME (2017) Fixed dynamometry is more sensitive than vital capacity or ALS rating scale. Muscle Nerve 56(4):710–715. https://doi.org/10.1002/mus.25586
Article
PubMed
Google Scholar
Martin HJ, Yule V, Syddall HE, Dennison EM, Cooper C, Aihie Sayer A (2006) Is hand-held dynamometry useful for the measurement of quadriceps strength in older people? A comparison with the gold standard Bodex dynamometry. Gerontology 52(3):154–159. https://doi.org/10.1159/000091824
CAS
Article
PubMed
Google Scholar
Toonstra J, Mattacola CG (2013) Test-retest reliability and validity of isometric knee-flexion and -extension measurement using 3 methods of assessing muscle strength. J Sport Rehabil 22:1. https://doi.org/10.1123/jsr.2013.TR7
Article
Google Scholar
Sarabon N, Kozinc Z, Bishop C, Maffiuletti NA (2020) Factors influencing bilateral deficit and inter-limb asymmetry of maximal and explosive strength: motor task, outcome measure and muscle group. Eur J Appl Physiol 120(7):1681–1688. https://doi.org/10.1007/s00421-020-04399-1
CAS
Article
PubMed
Google Scholar
Sarabon N, Rosker J, Fruhmann H, Burggraf S, Loefler S, Kern H (2013) Reliability of maximal voluntary contraction related parameters measured by a novel portable isometric knee dynamometer. Phys Med Rehabilit Kurortmed 23(01):22–27. https://doi.org/10.1055/s-0032-1331190
Article
Google Scholar
Helleman J, Van Eenennaam R, Kruitwagen ET, Kruithof WJ, Slappendel MJ, Van Den Berg LH, Visser-Meily JMA (2020) Beelen A (2020) Telehealth as part of specialized ALS care: feasibility and user experiences with ALS home-monitoring and coaching. Amyotroph Lateral Scler Frontotemporal Degener. https://doi.org/10.1080/216784211718712
Article
PubMed
Google Scholar
Hobson EV, Baird WO, Bradburn M, Cooper C, Mawson S, Quinn A, Shaw PJ, Walsh T, McDermott CJ (2019) Using telehealth in motor neuron disease to increase access to specialist multidisciplinary care: a UK-based pilot and feasibility study. BMJ Open 9(10):e028525. https://doi.org/10.1136/bmjopen-2018-028525
Article
PubMed
PubMed Central
Google Scholar
Rutkove SB, Qi K, Shelton K, Liss J, Berisha V, Shefner JM (2019) ALS longitudinal studies with frequent data collection at home: study design and baseline data. Amyotroph Lateral Scler Frontotemporal Degener 20(1–2):61–67. https://doi.org/10.1080/21678421.2018.1541095
Article
PubMed
Google Scholar
van Eijk RPA, Bakers JNE, Bunte TM, de Fockert AJ, Eijkemans MJC, van den Berg LH (2019) Accelerometry for remote monitoring of physical activity in amyotrophic lateral sclerosis: a longitudinal cohort study. J Neurol 266(10):2387–2395. https://doi.org/10.1007/s00415-019-09427-5
Article
PubMed
PubMed Central
Google Scholar
Rushton DJ, Andres PL, Allred P, Baloh RH, Svendsen CN (2017) Patients with ALS show highly correlated progression rates in left and right limb muscles. Neurology 89(2):196–206. https://doi.org/10.1212/WNL.0000000000004105
Article
PubMed
PubMed Central
Google Scholar
Shields RK, Ruhland JL, Ross MA, Saehler MM, Smith KB, Heffner ML (1998) Analysis of health-related quality of life and muscle impairment in individuals with amyotrophic lateral sclerosis using the medical outcome survey and the Tufts Quantitative Neuromuscular Exam. Arch Phys Med Rehabil 79(7):855–862. https://doi.org/10.1016/s0003-9993(98)90370-7
CAS
Article
PubMed
Google Scholar
Shefner JM, Liu D, Leitner ML, Schoenfeld D, Johns DR, Ferguson T, Cudkowicz M (2016) Quantitative strength testing in ALS clinical trials. Neurology 87(6):617–624. https://doi.org/10.1212/WNL.0000000000002941
Article
PubMed
PubMed Central
Google Scholar
van Es MA, Hardiman O, Chio A, Al-Chalabi A, Pasterkamp RJ, Veldink JH, van den Berg LH (2017) Amyotrophic lateral sclerosis. Lancet 390(10107):2084–2098. https://doi.org/10.1016/S0140-6736(17)31287-4
Article
PubMed
Google Scholar
van der Ploeg RJ, Oosterhuis HJ (1991) The “make/break test” as a diagnostic tool in functional weakness. J Neurol Neurosurg Psychiatry 54(3):248–251. https://doi.org/10.1136/jnnp.54.3.248
Article
PubMed
PubMed Central
Google Scholar
Ludbrook J (2010) Confidence in Altman-Bland plots: a critical review of the method of differences. Clin Exp Pharmacol Physiol 37(2):143–149. https://doi.org/10.1111/j.1440-1681.2009.05288.x
CAS
Article
PubMed
Google Scholar
Euser AM, Dekker FW, le Cessie S (2008) A practical approach to Bland-Altman plots and variation coefficients for log transformed variables. J Clin Epidemiol 61(10):978–982. https://doi.org/10.1016/j.jclinepi.2007.11.003
Article
PubMed
Google Scholar
Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67(1):48. https://doi.org/10.18637/jss.v067.i01
Hogrel JY, Benveniste O, Bachasson D (2020) Routine monitoring of isometric knee extension strength in patients with muscle impairments using a new portable device: cross-validation against a standard isokinetic dynamometer. Physiol Meas 41(1):015003. https://doi.org/10.1088/1361-6579/ab6b49
Article
PubMed
Google Scholar
Roussel MP, Hebert LJ, Duchesne E (2019) Intra-rater reliability and concurrent validity of quantified muscle testing for maximal knee extensors strength in men with myotonic dystrophy type 1. J Neuromuscul Dis 6(2):233–240. https://doi.org/10.3233/JND-190388
Article
PubMed
Google Scholar
Andres PL, Hedlund W, Finison L, Conlon T, Felmus M, Munsat TL (1986) Quantitative motor assessment in amyotrophic lateral sclerosis. Neurology 36(7):937–941. https://doi.org/10.1212/wnl.36.7.937
CAS
Article
PubMed
Google Scholar
Jackson SM, Cheng MS, Smith AR Jr, Kolber MJ (2017) Intrarater reliability of hand held dynamometry in measuring lower extremity isometric strength using a portable stabilization device. Musculoskelet Sci Pract 27:137–141. https://doi.org/10.1016/j.math.2016.07.010
Article
PubMed
Google Scholar
Koblbauer IF, Lambrecht Y, van der Hulst ML, Neeter C, Engelbert RH, Poolman RW, Scholtes VA (2011) Reliability of maximal isometric knee strength testing with modified hand-held dynamometry in patients awaiting total knee arthroplasty: useful in research and individual patient settings? A reliability study. BMC Musculoskelet Disord 12:249. https://doi.org/10.1186/1471-2474-12-249
Article
PubMed
PubMed Central
Google Scholar
Kolber MJ, Beekhuizen K, Cheng MS, Fiebert IM (2007) The reliability of hand-held dynamometry in measuring isometric strength of the shoulder internal and external rotator musculature using a stabilization device. Physiother Theory Pract 23(2):119–124. https://doi.org/10.1080/09593980701213032
Article
PubMed
Google Scholar
Shin S, Lee K, Song C (2016) Relationship of body composition, knee extensor strength, and standing balance to lumbar bone mineral density in postmenopausal females. J Phys Ther Sci 28(7):2105–2109. https://doi.org/10.1589/jpts.28.2105
Article
PubMed
PubMed Central
Google Scholar
Thorborg K, Bandholm T, Holmich P (2013) Hip- and knee-strength assessments using a hand-held dynamometer with external belt-fixation are inter-tester reliable. Knee Surg Sports Traumatol Arthrosc 21(3):550–555. https://doi.org/10.1007/s00167-012-2115-2
Article
PubMed
Google Scholar
Hansen EM, McCartney CN, Sweeney RS, Palimenio MR, Grindstaff TL (2015) Hand-held dynamometer positioning impacts discomfort during quadriceps strength testing: a validity and reliability study. Int J Sports Phys Ther 10(1):62–68
PubMed
PubMed Central
Google Scholar
Bohannon RW (1990) Hand-held compared with isokinetic dynamometry for measurement of static knee extension torque (parallel reliability of dynamometers). Clin Phys Physiol Meas 11(3):217–222. https://doi.org/10.1088/0143-0815/11/3/004
CAS
Article
PubMed
Google Scholar
Reed RL, Den Hartog R, Yochum K, Pearlmutter L, Ruttinger AC, Mooradian AD (1993) A comparison of hand-held isometric strength measurement with isokinetic muscle strength measurement in the elderly. J Am Geriatr Soc 41(1):53–56. https://doi.org/10.1111/j.1532-5415.1993.tb05949.x
CAS
Article
PubMed
Google Scholar
Kimura F, Fujimura C, Ishida S, Nakajima H, Furutama D, Uehara H, Shinoda K, Sugino M, Hanafusa T (2006) Progression rate of ALSFRS-R at time of diagnosis predicts survival time in ALS. Neurology 66(2):265–267. https://doi.org/10.1212/01.wnl.0000194316.91908.8a
CAS
Article
PubMed
Google Scholar
Westeneng HJ, Debray TPA, Visser AE, van Eijk RPA, Rooney JPK, Calvo A, Martin S, McDermott CJ, Thompson AG, Pinto S, Kobeleva X, Rosenbohm A, Stubendorff B, Sommer H, Middelkoop BM, Dekker AM, van Vugt J, van Rheenen W, Vajda A, Heverin M, Kazoka M, Hollinger H, Gromicho M, Korner S, Ringer TM, Rodiger A, Gunkel A, Shaw CE, Bredenoord AL, van Es MA, Corcia P, Couratier P, Weber M, Grosskreutz J, Ludolph AC, Petri S, de Carvalho M, Van Damme P, Talbot K, Turner MR, Shaw PJ, Al-Chalabi A, Chio A, Hardiman O, Moons KGM, Veldink JH, van den Berg LH (2018) Prognosis for patients with amyotrophic lateral sclerosis: development and validation of a personalised prediction model. Lancet Neurol 17(5):423–433. https://doi.org/10.1016/S1474-4422(18)30089-9
Article
PubMed
Google Scholar