Paulson HL, Shakkottai VG, Clark HB, Orr HT (2017) Polyglutamine spinocerebellar ataxias—from genes to potential treatments. Nat Rev Neurosci 18(10):613–626
Article
CAS
PubMed
PubMed Central
Google Scholar
Ruano L, Melo C, Silva MC, Coutinho P (2014) The global epidemiology of hereditary ataxia and spastic paraplegia: a systematic review of prevalence studies. Neuroepidemiology 42(3):174–183
Article
PubMed
Google Scholar
de Castilhos RM, Furtado GV, Gheno TC, Schaeffer P, Russo A, Barsottini O et al (2014) Spinocerebellar ataxias in Brazil–frequencies and modulating effects of related genes. Cerebellum 13(1):17–28
Article
CAS
PubMed
Google Scholar
Coutinho P, Ruano L, Loureiro JL, Cruz VT, Barros J, Tuna A et al (2013) Hereditary ataxia and spastic paraplegia in Portugal: a population-based prevalence study. JAMA Neurol 70(6):746–755
Article
PubMed
Google Scholar
Zaltzman R, Sharony R, Klein C, Gordon CR (2016) Spinocerebellar ataxia type 3 in Israel: phenotype and genotype of a Jew Yemenite subpopulation. J Neurol 263(11):2207–2214
Article
PubMed
Google Scholar
Gonzalez-Zaldivar Y, Vazquez-Mojena Y, Laffita-Mesa JM, Almaguer-Mederos LE, Rodriguez-Labrada R, Sanchez-Cruz G et al (2015) Epidemiological, clinical, and molecular characterization of Cuban families with spinocerebellar ataxia type 3/Machado–Joseph disease. Cerebellum Ataxias 2:1
Article
PubMed
PubMed Central
Google Scholar
Paradisi I, Ikonomu V, Arias S (2016) Spinocerebellar ataxias in Venezuela: genetic epidemiology and their most likely ethnic descent. J Hum Genet 61(3):215–222
Article
CAS
PubMed
Google Scholar
Bargiela D, Yu-Wai-Man P, Keogh M, Horvath R, Chinnery PF (2015) Prevalence of neurogenetic disorders in the North of England. Neurology 85(14):1195–1201
Article
PubMed
PubMed Central
Google Scholar
Coutelier M, Coarelli G, Monin ML, Konop J, Davoine CS, Tesson C et al (2017) A panel study on patients with dominant cerebellar ataxia highlights the frequency of channelopathies. Brain 140(6):1579–1594
Article
PubMed
Google Scholar
Chen Z, Wang P, Wang C, Peng Y, Hou X, Zhou X et al (2018) Updated frequency analysis of spinocerebellar ataxia in China. Brain 141(4):e22
Article
PubMed
Google Scholar
Chelban V, Wiethoff S, Fabian-Jessing BK, Haridy NA, Khan A, Efthymiou S et al. Genotype–phenotype correlations, dystonia and disease progression in spinocerebellar ataxia type 14. Mov Disord. 2018
Aydin G, Dekomien G, Hoffjan S, Gerding WM, Epplen JT, Arning L (2018) Frequency of SCA8, SCA10, SCA12, SCA36, FXTAS and C9orf72 repeat expansions in SCA patients negative for the most common SCA subtypes. BMC Neurol 18(1):3
Article
CAS
PubMed
PubMed Central
Google Scholar
Fawcett K, Mehrabian M, Liu YT, Hamed S, Elahi E, Revesz T et al (2013) The frequency of spinocerebellar ataxia type 23 in a UK population. J Neurol 260(3):856–859
Article
PubMed
Google Scholar
Guo YC, Lin JJ, Liao YC, Tsai PC, Lee YC, Soong BW (2014) Spinocerebellar ataxia 35: novel mutations in TGM6 with clinical and genetic characterization. Neurology 83(17):1554–1561
Article
CAS
PubMed
Google Scholar
Ngo K, Aker M, Petty LE, Chen J, Cavalcanti F, Nelson AB et al (2018) Expanding the global prevalence of spinocerebellar ataxia type 42. Neurol Genet 4(3):e232
Article
PubMed
PubMed Central
Google Scholar
Obayashi M, Stevanin G, Synofzik M, Monin ML, Duyckaerts C, Sato N et al (2015) Spinocerebellar ataxia type 36 exists in diverse populations and can be caused by a short hexanucleotide GGCCTG repeat expansion. J Neurol Neurosurg Psychiatry 86(9):986–995
Article
PubMed
Google Scholar
Lee YC, Tsai PC, Guo YC, Hsiao CT, Liu GT, Liao YC et al (2016) Spinocerebellar ataxia type 36 in the Han Chinese. Neurol Genet 2(3):e68
Article
CAS
PubMed
PubMed Central
Google Scholar
Valera JM, Diaz T, Petty LE, Quintans B, Yanez Z, Boerwinkle E et al (2017) Prevalence of spinocerebellar ataxia 36 in a US population. Neurol Genet 3(4):e174
Article
CAS
PubMed
PubMed Central
Google Scholar
Harding AE (1982) The clinical features and classification of the late onset autosomal dominant cerebellar ataxias. A study of 11 families, including descendants of the ‘the Drew family of Walworth’. Brain 105(Pt 1):1–28
Article
CAS
PubMed
Google Scholar
Bird TD (1993) Hereditary ataxia overview. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K et al (eds) GeneReviews((R)). Seattle (WA)
Winkelmann J, Lin L, Schormair B, Kornum BR, Faraco J, Plazzi G et al (2012) Mutations in DNMT1 cause autosomal dominant cerebellar ataxia, deafness and narcolepsy. Hum Mol Genet 21(10):2205–2210
Article
CAS
PubMed
PubMed Central
Google Scholar
Pfeffer G, Blakely EL, Alston CL, Hassani A, Boggild M, Horvath R et al (2012) Adult-onset spinocerebellar ataxia syndromes due to MTATP6 mutations. J Neurol Neurosurg Psychiatry 83(9):883–886
Article
PubMed
Google Scholar
Gennarino VA, Palmer EE, McDonell LM, Wang L, Adamski CJ, Koire A et al (2018) A Mild PUM1 mutation is associated with adult-onset ataxia, whereas haploinsufficiency causes developmental delay and seizures. Cell 172(5):924–936 e11
Article
CAS
PubMed
PubMed Central
Google Scholar
Nibbeling EAR, Duarri A, Verschuuren-Bemelmans CC, Fokkens MR, Karjalainen JM, Smeets C et al (2017) Exome sequencing and network analysis identifies shared mechanisms underlying spinocerebellar ataxia. Brain 140(11):2860–2878
Article
PubMed
Google Scholar
Holmes SE, O’Hearn EE, McInnis MG, Gorelick-Feldman DA, Kleiderlein JJ, Callahan C et al (1999) Expansion of a novel CAG trinucleotide repeat in the 5′ region of PPP2R2B is associated with SCA12. Nat Genet 23(4):391–392
Article
CAS
PubMed
Google Scholar
Synofzik M, Beetz C, Bauer C, Bonin M, Sanchez-Ferrero E, Schmitz-Hubsch T et al (2011) Spinocerebellar ataxia type 15: diagnostic assessment, frequency, and phenotypic features. J Med Genet 48(6):407–412
Article
PubMed
Google Scholar
van Swieten JC, Brusse E, de Graaf BM, Krieger E, van de Graaf R, de Koning I et al (2003) A mutation in the fibroblast growth factor 14 gene is associated with autosomal dominant cerebellar ataxia [corrected]. Am J Hum Genet 72(1):191–199
Article
PubMed
Google Scholar
Chen DH, Brkanac Z, Verlinde CL, Tan XJ, Bylenok L, Nochlin D et al (2003) Missense mutations in the regulatory domain of PKC gamma: a new mechanism for dominant nonepisodic cerebellar ataxia. Am J Hum Genet 72(4):839–849
Article
CAS
PubMed
PubMed Central
Google Scholar
Kobayashi H, Abe K, Matsuura T, Ikeda Y, Hitomi T, Akechi Y et al (2011) Expansion of intronic GGCCTG hexanucleotide repeat in NOP56 causes SCA36, a type of spinocerebellar ataxia accompanied by motor neuron involvement. Am J Hum Genet 89(1):121–130
Article
CAS
PubMed
PubMed Central
Google Scholar
Rossi M, Perez-Lloret S, Doldan L, Cerquetti D, Balej J, Millar Vernetti P et al (2014) Autosomal dominant cerebellar ataxias: a systematic review of clinical features. Eur J Neurol 21(4):607–615
Article
CAS
PubMed
Google Scholar
Marras C, Lang A, van de Warrenburg BP, Sue CM, Tabrizi SJ, Bertram L et al (2016) Nomenclature of genetic movement disorders: recommendations of the international Parkinson and movement disorder society task force. Mov Disord 31(4):436–457
Article
PubMed
Google Scholar
Pena LDM, Jiang YH, Schoch K, Spillmann RC, Walley N, Stong N et al (2018) Looking beyond the exome: a phenotype-first approach to molecular diagnostic resolution in rare and undiagnosed diseases. Genet Med 20(4):464–469
Article
PubMed
Google Scholar
Jen JC, Graves TD, Hess EJ, Hanna MG, Griggs RC, Baloh RW et al (2007) Primary episodic ataxias: diagnosis, pathogenesis and treatment. Brain 130(Pt 10):2484–2493
Article
CAS
PubMed
Google Scholar
Graves TD, Cha YH, Hahn AF, Barohn R, Salajegheh MK, Griggs RC et al (2014) Episodic ataxia type 1: clinical characterization, quality of life and genotype–phenotype correlation. Brain 137(Pt 4):1009–1018
Article
PubMed
PubMed Central
Google Scholar
Jen J, Kim GW, Baloh RW (2004) Clinical spectrum of episodic ataxia type 2. Neurology 62(1):17–22
Article
CAS
PubMed
Google Scholar
Tsoi H, Yu AC, Chen ZS, Ng NK, Chan AY, Yuen LY et al (2014) A novel missense mutation in CCDC88C activates the JNK pathway and causes a dominant form of spinocerebellar ataxia. J Med Genet 51(9):590–595
Article
CAS
PubMed
Google Scholar
Fogel BL, Hanson SM, Becker EB (2015) Do mutations in the murine ataxia gene TRPC3 cause cerebellar ataxia in humans? Mov Disord 30(2):284–286
Article
CAS
PubMed
Google Scholar
Morino H, Matsuda Y, Muguruma K, Miyamoto R, Ohsawa R, Ohtake T et al (2015) A mutation in the low voltage-gated calcium channel CACNA1G alters the physiological properties of the channel, causing spinocerebellar ataxia. Mol Brain 8:89
Article
CAS
PubMed
PubMed Central
Google Scholar
Depondt C, Donatello S, Rai M, Wang FC, Manto M, Simonis N et al (2016) MME mutation in dominant spinocerebellar ataxia with neuropathy (SCA43). Neurol Genet 2(5):e94
Article
CAS
PubMed
PubMed Central
Google Scholar
Watson LM, Bamber E, Schnekenberg RP, Williams J, Bettencourt C, Lickiss J et al (2017) Dominant mutations in GRM1 cause spinocerebellar ataxia type 44. Am J Hum Genet 101(3):451–458
Article
CAS
PubMed
PubMed Central
Google Scholar
Coutelier M, Stevanin G, Brice A (2015) Genetic landscape remodelling in spinocerebellar ataxias: the influence of next-generation sequencing. J Neurol 262(10):2382–2395
Article
CAS
PubMed
Google Scholar
Galatolo D, Tessa A, Filla A, Santorelli FM (2018) Clinical application of next generation sequencing in hereditary spinocerebellar ataxia: increasing the diagnostic yield and broadening the ataxia-spasticity spectrum. A retrospective analysis. Neurogenetics 19(1):1–8
Article
CAS
PubMed
Google Scholar
Coutelier M, Hammer MB, Stevanin G, Monin ML, Davoine CS, Mochel F et al (2018) Efficacy of exome-targeted capture sequencing to detect mutations in known cerebellar ataxia genes. JAMA Neurol 75(5):591–599
Article
PubMed
PubMed Central
Google Scholar
Wojciechowska M, Krzyzosiak WJ (2011) Cellular toxicity of expanded RNA repeats: focus on RNA foci. Hum Mol Genet 20(19):3811–3821
Article
CAS
PubMed
PubMed Central
Google Scholar
Lin X, Ashizawa T (2005) Recent progress in spinocerebellar ataxia type-10 (SCA10). Cerebellum 4(1):37–42
Article
CAS
PubMed
Google Scholar
White M, Xia G, Gao R, Wakamiya M, Sarkar PS, McFarland K et al (2012) Transgenic mice with SCA10 pentanucleotide repeats show motor phenotype and susceptibility to seizure: a toxic RNA gain-of-function model. J Neurosci Res 90(3):706–714
Article
CAS
PubMed
Google Scholar
Daughters RS, Tuttle DL, Gao W, Ikeda Y, Moseley ML, Ebner TJ et al (2009) RNA gain-of-function in spinocerebellar ataxia type 8. PLoS Genet 5(8):e1000600
Article
CAS
PubMed
PubMed Central
Google Scholar
Cho DH, Thienes CP, Mahoney SE, Analau E, Filippova GN, Tapscott SJ (2005) Antisense transcription and heterochromatin at the DM1 CTG repeats are constrained by CTCF. Mol Cell 20(3):483–489
Article
CAS
PubMed
Google Scholar
Rudnicki DD, Holmes SE, Lin MW, Thornton CA, Ross CA, Margolis RL (2007) Huntington’s disease-like 2 is associated with CUG repeat-containing RNA foci. Ann Neurol 61(3):272–282
Article
CAS
PubMed
Google Scholar
Corral-Juan M, Serrano-Munuera C, Rabano A, Cota-Gonzalez D, Segarra-Roca A, Ispierto L et al (2018) Clinical, genetic and neuropathological characterization of spinocerebellar ataxia type 37. Brain 141(7):1981–1997
Article
PubMed
Google Scholar
McBride HM, Neuspiel M, Wasiak S (2006) Mitochondria: more than just a powerhouse. Curr Biol 16(14):R551–R560
Article
CAS
PubMed
Google Scholar
Cornelius N, Wardman JH, Hargreaves IP, Neergheen V, Bie AS, Tumer Z et al (2017) Evidence of oxidative stress and mitochondrial dysfunction in spinocerebellar ataxia type 2 (SCA2) patient fibroblasts: effect of coenzyme Q10 supplementation on these parameters. Mitochondrion 34:103–114
Article
CAS
PubMed
Google Scholar
Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39(1):44–84
Article
CAS
PubMed
Google Scholar
Simon DK, Zheng K, Velazquez L, Santos N, Almaguer L, Figueroa KP et al (2007) Mitochondrial complex I gene variant associated with early age at onset in spinocerebellar ataxia type 2. Arch Neurol 64(7):1042–1044
Article
PubMed
Google Scholar
Monte TL, Pereira FS, Reckziegel EDR, Augustin MC, Locks-Coelho LD, Santos ASP et al (2017) Neurological phenotypes in spinocerebellar ataxia type 2: role of mitochondrial polymorphism A10398G and other risk factors. Parkinsonism Relat Disord 42:54–60
Article
PubMed
Google Scholar
Kass RS (2005) The channelopathies: novel insights into molecular and genetic mechanisms of human disease. J Clin Invest 115(8):1986–1989
Article
CAS
PubMed
PubMed Central
Google Scholar
Coutelier M, Blesneac I, Monteil A, Monin ML, Ando K, Mundwiller E et al (2015) A recurrent mutation in CACNA1G alters Cav3.1 T-type calcium-channel conduction and causes autosomal-dominant cerebellar ataxia. Am J Hum Genet 97(5):726–737
Article
CAS
PubMed
PubMed Central
Google Scholar
Jimenez-Sanchez M, Thomson F, Zavodszky E, Rubinsztein DC (2012) Autophagy and polyglutamine diseases. Prog Neurobiol 97(2):67–82
Article
CAS
PubMed
PubMed Central
Google Scholar
Alves S, Cormier-Dequaire F, Marinello M, Marais T, Muriel MP, Beaumatin F et al (2014) The autophagy/lysosome pathway is impaired in SCA7 patients and SCA7 knock-in mice. Acta Neuropathol 128(5):705–722
Article
CAS
PubMed
Google Scholar
Onofre I, Mendonca N, Lopes S, Nobre R, de Melo JB, Carreira IM et al (2016) Fibroblasts of Machado Joseph disease patients reveal autophagy impairment. Sci Rep 6:28220
Article
CAS
PubMed
PubMed Central
Google Scholar
Menzies FM, Huebener J, Renna M, Bonin M, Riess O, Rubinsztein DC (2010) Autophagy induction reduces mutant ataxin-3 levels and toxicity in a mouse model of spinocerebellar ataxia type 3. Brain 133(Pt 1):93–104
Article
CAS
PubMed
Google Scholar
Ashkenazi A, Bento CF, Ricketts T, Vicinanza M, Siddiqi F, Pavel M et al (2017) Polyglutamine tracts regulate beclin 1-dependent autophagy. Nature 545(7652):108–111
Article
CAS
PubMed
PubMed Central
Google Scholar
Matilla-Duenas A, Sanchez I, Corral-Juan M, Davalos A, Alvarez R, Latorre P (2010) Cellular and molecular pathways triggering neurodegeneration in the spinocerebellar ataxias. Cerebellum 9(2):148–166
Article
CAS
PubMed
Google Scholar
Mushegian AR, Bassett DE Jr, Boguski MS, Bork P, Koonin EV (1997) Positionally cloned human disease genes: patterns of evolutionary conservation and functional motifs. Proc Natl Acad Sci USA 94(11):5831–5836
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang S, Li XJ, Li S (2016) Molecular mechanisms underlying Spinocerebellar Ataxia 17 (SCA17) pathogenesis. Rare Dis 4(1):e1223580
Article
CAS
PubMed
PubMed Central
Google Scholar
Genetic Modifiers of Huntington’s Disease C (2015) Identification of Genetic Factors that Modify Clinical Onset of Huntington’s Disease. Cell 162(3):516–526
Article
CAS
Google Scholar
Bettencourt C, Hensman-Moss D, Flower M, Wiethoff S, Brice A, Goizet C et al (2016) DNA repair pathways underlie a common genetic mechanism modulating onset in polyglutamine diseases. Ann Neurol 79(6):983–990
Article
CAS
PubMed
PubMed Central
Google Scholar
Thongthip S, Bellani M, Gregg SQ, Sridhar S, Conti BA, Chen Y et al (2016) Fan1 deficiency results in DNA interstrand cross-link repair defects, enhanced tissue karyomegaly, and organ dysfunction. Genes Dev 30(6):645–659
Article
CAS
PubMed
PubMed Central
Google Scholar
Trinh TQ, Sinden RR (1991) Preferential DNA secondary structure mutagenesis in the lagging strand of replication in E. coli. Nature 352(6335):544–547
Article
CAS
PubMed
Google Scholar
Martins S, Pearson CE, Coutinho P, Provost S, Amorim A, Dube MP et al (2014) Modifiers of (CAG)(n) instability in Machado-Joseph disease (MJD/SCA3) transmissions: an association study with DNA replication, repair and recombination genes. Hum Genet 133(10):1311–1318
Article
CAS
PubMed
Google Scholar
McMurray CT (2010) Mechanisms of trinucleotide repeat instability during human development. Nat Rev Genet 11(11):786–799
Article
CAS
PubMed
PubMed Central
Google Scholar
Raczy C, Petrovski R, Saunders CT, Chorny I, Kruglyak S, Margulies EH et al (2013) Isaac: ultra-fast whole-genome secondary analysis on Illumina sequencing platforms. Bioinformatics 29(16):2041–2043
Article
CAS
PubMed
Google Scholar
Akimoto C, Volk AE, van Blitterswijk M, Van den Broeck M, Leblond CS, Lumbroso S et al (2014) A blinded international study on the reliability of genetic testing for GGGGCC-repeat expansions in C9orf72 reveals marked differences in results among 14 laboratories. J Med Genet 51(6):419–424
Article
CAS
PubMed
Google Scholar
Ashley EA (2015) The precision medicine initiative: a new national effort. JAMA 313(21):2119–2120
Article
CAS
PubMed
Google Scholar
Cagnoli C, Brussino A, Mancini C, Ferrone M, Orsi L, Salmin P et al (2018) Spinocerebellar ataxia tethering PCR: a rapid genetic test for the diagnosis of spinocerebellar ataxia types 1, 2, 3, 6, and 7 by PCR and capillary electrophoresis. J Mol Diagn 20(3):289–297
Article
CAS
PubMed
Google Scholar
Clarke J, Wu HC, Jayasinghe L, Patel A, Reid S, Bayley H (2009) Continuous base identification for single-molecule nanopore DNA sequencing. Nat Nanotechnol 4(4):265–270
Article
CAS
PubMed
Google Scholar
Roberts RJ, Carneiro MO, Schatz MC (2013) The advantages of SMRT sequencing. Genome Biol 14(7):405
Article
PubMed
PubMed Central
Google Scholar
Carneiro MO, Russ C, Ross MG, Gabriel SB, Nusbaum C, DePristo MA (2012) Pacific biosciences sequencing technology for genotyping and variation discovery in human data. BMC Genom 13:375
Article
CAS
Google Scholar
Laver T, Harrison J, O’Neill PA, Moore K, Farbos A, Paszkiewicz K et al (2015) Assessing the performance of the Oxford Nanopore Technologies MinION. Biomol Detect Quantif 3:1–8
Article
CAS
PubMed
PubMed Central
Google Scholar
Dolzhenko E, van Vugt J, Shaw RJ, Bekritsky MA, van Blitterswijk M, Narzisi G et al (2017) Detection of long repeat expansions from PCR-free whole-genome sequence data. Genome Res 27(11):1895–1903
Article
CAS
PubMed
PubMed Central
Google Scholar
Pulst SM (2016) Degenerative ataxias, from genes to therapies: the 2015 Cotzias lecture. Neurology 86(24):2284–2290
Article
CAS
PubMed
PubMed Central
Google Scholar
Schoch KM, Miller TM (2017) Antisense oligonucleotides: translation from mouse models to human neurodegenerative diseases. Neuron 94(6):1056–1070
Article
CAS
PubMed
PubMed Central
Google Scholar
Geary RS, Norris D, Yu R, Bennett CF (2015) Pharmacokinetics, biodistribution and cell uptake of antisense oligonucleotides. Adv Drug Deliv Rev 87:46–51
Article
CAS
PubMed
Google Scholar
Toonen LJ, Schmidt I, Luijsterburg MS, van Attikum H, van Roon-Mom WM (2016) Antisense oligonucleotide-mediated exon skipping as a strategy to reduce proteolytic cleavage of ataxin-3. Sci Rep 6:35200
Article
CAS
PubMed
PubMed Central
Google Scholar
Evers MM, Tran HD, Zalachoras I, Pepers BA, Meijer OC, den Dunnen JT et al (2013) Ataxin-3 protein modification as a treatment strategy for spinocerebellar ataxia type 3: removal of the CAG containing exon. Neurobiol Dis 58:49–56
Article
CAS
PubMed
Google Scholar
Moore LR, Rajpal G, Dillingham IT, Qutob M, Blumenstein KG, Gattis D et al (2017) Evaluation of antisense oligonucleotides Targeting ATXN3 in SCA3 mouse models. Mol Ther Nucleic Acids 7:200–210
Article
CAS
PubMed
PubMed Central
Google Scholar
Toonen LJA, Rigo F, van Attikum H, van Roon-Mom WMC (2017) Antisense oligonucleotide-mediated removal of the polyglutamine repeat in spinocerebellar ataxia type 3 mice. Mol Ther Nucleic Acids 8:232–242
Article
CAS
PubMed
PubMed Central
Google Scholar
Becker LA, Huang B, Bieri G, Ma R, Knowles DA, Jafar-Nejad P et al (2017) Therapeutic reduction of ataxin-2 extends lifespan and reduces pathology in TDP-43 mice. Nature 544(7650):367–371
Article
CAS
PubMed
PubMed Central
Google Scholar
Bumcrot D, Manoharan M, Koteliansky V, Sah DW (2006) RNAi therapeutics: a potential new class of pharmaceutical drugs. Nat Chem Biol 2(12):711–719
Article
CAS
PubMed
PubMed Central
Google Scholar
Ramachandran PS, Boudreau RL, Schaefer KA, La Spada AR, Davidson BL (2014) Nonallele specific silencing of ataxin-7 improves disease phenotypes in a mouse model of SCA7. Mol Ther 22(9):1635–1642
Article
CAS
PubMed
PubMed Central
Google Scholar
Scholefield J, Greenberg LJ, Weinberg MS, Arbuthnot PB, Abdelgany A, Wood MJ (2009) Design of RNAi hairpins for mutation-specific silencing of ataxin-7 and correction of a SCA7 phenotype. PLoS One 4(9):e7232
Article
CAS
PubMed
PubMed Central
Google Scholar
Nobrega C, Nascimento-Ferreira I, Onofre I, Albuquerque D, Hirai H, Deglon N et al (2013) Silencing mutant ataxin-3 rescues motor deficits and neuropathology in Machado-Joseph disease transgenic mice. PLoS One 8(1):e52396
Article
CAS
PubMed
PubMed Central
Google Scholar
Costa Mdo C, Luna-Cancalon K, Fischer S, Ashraf NS, Ouyang M, Dharia RM et al (2013) Toward RNAi therapy for the polyglutamine disease Machado–Joseph disease. Mol Ther 21(10):1898–1908
Article
CAS
PubMed
Google Scholar
Weimann JM, Charlton CA, Brazelton TR, Hackman RC, Blau HM (2003) Contribution of transplanted bone marrow cells to Purkinje neurons in human adult brains. Proc Natl Acad Sci USA 100(4):2088–2093
Article
CAS
PubMed
PubMed Central
Google Scholar
Fernandez-Funez P, Nino-Rosales ML, de Gouyon B, She WC, Luchak JM, Martinez P et al (2000) Identification of genes that modify ataxin-1-induced neurodegeneration. Nature 408(6808):101–106
Article
CAS
PubMed
Google Scholar
Chen KA, Cruz PE, Lanuto DJ, Flotte TR, Borchelt DR, Srivastava A et al (2011) Cellular fusion for gene delivery to SCA1 affected Purkinje neurons. Mol Cell Neurosci 47(1):61–70
Article
CAS
PubMed
PubMed Central
Google Scholar
Chintawar S, Hourez R, Ravella A, Gall D, Orduz D, Rai M et al (2009) Grafting neural precursor cells promotes functional recovery in an SCA1 mouse model. J Neurosci 29(42):13126–13135
Article
CAS
PubMed
PubMed Central
Google Scholar
Alvarez-Dolado M, Pardal R, Garcia-Verdugo JM, Fike JR, Lee HO, Pfeffer K et al (2003) Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes. Nature 425(6961):968–973
Article
CAS
PubMed
Google Scholar
Chang YK, Chen MH, Chiang YH, Chen YF, Ma WH, Tseng CY et al (2011) Mesenchymal stem cell transplantation ameliorates motor function deterioration of spinocerebellar ataxia by rescuing cerebellar Purkinje cells. J Biomed Sci 18:54
Article
CAS
PubMed
PubMed Central
Google Scholar
Jin JL, Liu Z, Lu ZJ, Guan DN, Wang C, Chen ZB et al (2013) Safety and efficacy of umbilical cord mesenchymal stem cell therapy in hereditary spinocerebellar ataxia. Curr Neurovasc Res 10(1):11–20
Article
CAS
PubMed
Google Scholar
Dongmei H, Jing L, Mei X, Ling Z, Hongmin Y, Zhidong W et al (2011) Clinical analysis of the treatment of spinocerebellar ataxia and multiple system atrophy-cerebellar type with umbilical cord mesenchymal stromal cells. Cytotherapy 13(8):913–917
Article
PubMed
Google Scholar
Orr HT, Chung MY, Banfi S, Kwiatkowski TJ Jr, Servadio A, Beaudet AL et al (1993) Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1. Nat Genet 4(3):221–226
Article
CAS
PubMed
Google Scholar
Pulst SM, Nechiporuk A, Nechiporuk T, Gispert S, Chen XN, Lopes-Cendes I et al (1996) Moderate expansion of a normally biallelic trinucleotide repeat in spinocerebellar ataxia type 2. Nat Genet 14(3):269–276
Article
CAS
PubMed
Google Scholar
Kawaguchi Y, Okamoto T, Taniwaki M, Aizawa M, Inoue M, Katayama S et al (1994) CAG expansions in a novel gene for Machado–Joseph disease at chromosome 14q32.1. Nat Genet 8(3):221–228
Article
CAS
PubMed
Google Scholar
Flanigan K, Gardner K, Alderson K, Galster B, Otterud B, Leppert MF et al (1996) Autosomal dominant spinocerebellar ataxia with sensory axonal neuropathy (SCA4): clinical description and genetic localization to chromosome 16q22.1. Am J Hum Genet 59(2):392–399
CAS
PubMed
PubMed Central
Google Scholar
Ranum LP, Schut LJ, Lundgren JK, Orr HT, Livingston DM (1994) Spinocerebellar ataxia type 5 in a family descended from the grandparents of President Lincoln maps to chromosome 11. Nat Genet 8(3):280–284
Article
CAS
PubMed
Google Scholar
Zhuchenko O, Bailey J, Bonnen P, Ashizawa T, Stockton DW, Amos C et al (1997) Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the alpha 1A-voltage-dependent calcium channel. Nat Genet 15(1):62–69
Article
CAS
PubMed
Google Scholar
Trottier Y, Lutz Y, Stevanin G, Imbert G, Devys D, Cancel G et al (1995) Polyglutamine expansion as a pathological epitope in Huntington’s disease and four dominant cerebellar ataxias. Nature 378(6555):403–406
Article
CAS
PubMed
Google Scholar
Koob MD, Moseley ML, Schut LJ, Benzow KA, Bird TD, Day JW et al (1999) An untranslated CTG expansion causes a novel form of spinocerebellar ataxia (SCA8). Nat Genet 21(4):379–384
Article
CAS
PubMed
Google Scholar
Matsuura T, Yamagata T, Burgess DL, Rasmussen A, Grewal RP, Watase K et al (2000) Large expansion of the ATTCT pentanucleotide repeat in spinocerebellar ataxia type 10. Nat Genet 26(2):191–194
Article
CAS
PubMed
Google Scholar
Houlden H, Johnson J, Gardner-Thorpe C, Lashley T, Hernandez D, Worth P et al (2007) Mutations in TTBK2, encoding a kinase implicated in tau phosphorylation, segregate with spinocerebellar ataxia type 11. Nat Genet 39(12):1434–1436
Article
CAS
PubMed
Google Scholar
Waters MF, Minassian NA, Stevanin G, Figueroa KP, Bannister JP, Nolte D et al (2006) Mutations in voltage-gated potassium channel KCNC3 cause degenerative and developmental central nervous system phenotypes. Nat Genet 38(4):447–451
Article
CAS
PubMed
Google Scholar
Brkanac Z, Bylenok L, Fernandez M, Matsushita M, Lipe H, Wolff J et al (2002) A new dominant spinocerebellar ataxia linked to chromosome 19q13.4-qter. Arch Neurol 59(8):1291–1295
Article
PubMed
Google Scholar
van de Leemput J, Chandran J, Knight MA, Holtzclaw LA, Scholz S, Cookson MR et al (2007) Deletion at ITPR1 underlies ataxia in mice and spinocerebellar ataxia 15 in humans. PLoS Genet 3(6):e108
Article
CAS
PubMed
PubMed Central
Google Scholar
Miyoshi Y, Yamada T, Tanimura M, Taniwaki T, Arakawa K, Ohyagi Y et al (2001) A novel autosomal dominant spinocerebellar ataxia (SCA16) linked to chromosome 8q22.1-24.1. Neurology 57(1):96–100
Article
CAS
PubMed
Google Scholar
Koide R, Kobayashi S, Shimohata T, Ikeuchi T, Maruyama M, Saito M et al (1999) A neurological disease caused by an expanded CAG trinucleotide repeat in the TATA-binding protein gene: a new polyglutamine disease? Hum Mol Genet 8(11):2047–2053
Article
CAS
PubMed
Google Scholar
Brkanac Z, Fernandez M, Matsushita M, Lipe H, Wolff J, Bird TD et al (2002) Autosomal dominant sensory/motor neuropathy with Ataxia (SMNA): Linkage to chromosome 7q22-q32. Am J Med Genet 114(4):450–457
Article
PubMed
Google Scholar
Schelhaas HJ, Ippel PF, Hageman G, Sinke RJ, van der Laan EN, Beemer FA (2001) Clinical and genetic analysis of a four-generation family with a distinct autosomal dominant cerebellar ataxia. J Neurol 248(2):113–120
Article
CAS
PubMed
Google Scholar
Knight MA, Gardner RJ, Bahlo M, Matsuura T, Dixon JA, Forrest SM et al (2004) Dominantly inherited ataxia and dysphonia with dentate calcification: spinocerebellar ataxia type 20. Brain 127(Pt 5):1172–1181
Article
PubMed
Google Scholar
Devos D, Schraen-Maschke S, Vuillaume I, Dujardin K, Naze P, Willoteaux C et al (2001) Clinical features and genetic analysis of a new form of spinocerebellar ataxia. Neurology 56(2):234–238
Article
CAS
PubMed
Google Scholar
Verbeek DS, van de Warrenburg BP, Wesseling P, Pearson PL, Kremer HP, Sinke RJ (2004) Mapping of the SCA23 locus involved in autosomal dominant cerebellar ataxia to chromosome region 20p13-12.3. Brain 127(Pt 11):2551–2557
Article
CAS
PubMed
Google Scholar
Stevanin G, Bouslam N, Thobois S, Azzedine H, Ravaux L, Boland A et al (2004) Spinocerebellar ataxia with sensory neuropathy (SCA25) maps to chromosome 2p. Ann Neurol 55(1):97–104
Article
CAS
PubMed
Google Scholar
Yu GY, Howell MJ, Roller MJ, Xie TD, Gomez CM (2005) Spinocerebellar ataxia type 26 maps to chromosome 19p13.3 adjacent to SCA6. Ann Neurol 57(3):349–354
Article
CAS
PubMed
Google Scholar
Svenstrup K, Nielsen TT, Aidt F, Rostgaard N, Duno M, Wibrand F et al (2017) SCA28: novel mutation in the AFG3L2 proteolytic domain causes a mild cerebellar syndrome with selective type-1 muscle fiber atrophy. Cerebellum 16(1):62–67
Article
CAS
PubMed
Google Scholar
Dudding TE, Friend K, Schofield PW, Lee S, Wilkinson IA, Richards RI (2004) Autosomal dominant congenital non-progressive ataxia overlaps with the SCA15 locus. Neurology 63(12):2288–2292
Article
CAS
PubMed
Google Scholar
Storey E, Bahlo M, Fahey M, Sisson O, Lueck CJ, Gardner RJ (2009) A new dominantly inherited pure cerebellar ataxia, SCA 30. J Neurol Neurosurg Psychiatry 80(4):408–411
Article
CAS
PubMed
Google Scholar
Nagaoka U, Takashima M, Ishikawa K, Yoshizawa K, Yoshizawa T, Ishikawa M et al (2000) A gene on SCA4 locus causes dominantly inherited pure cerebellar ataxia. Neurology 54(10):1971–1975
Article
CAS
PubMed
Google Scholar
Cadieux-Dion M, Turcotte-Gauthier M, Noreau A, Martin C, Meloche C, Gravel M et al (2014) Expanding the clinical phenotype associated with ELOVL4 mutation: study of a large French-Canadian family with autosomal dominant spinocerebellar ataxia and erythrokeratodermia. JAMA Neurol 71(4):470–475
Article
PubMed
Google Scholar
Wang JL, Yang X, Xia K, Hu ZM, Weng L, Jin X et al (2010) TGM6 identified as a novel causative gene of spinocerebellar ataxias using exome sequencing. Brain 133(Pt 12):3510–3518
Article
PubMed
Google Scholar
Serrano-Munuera C, Corral-Juan M, Stevanin G, San Nicolas H, Roig C, Corral J et al (2013) New subtype of spinocerebellar ataxia with altered vertical eye movements mapping to chromosome 1p32. JAMA Neurol 70(6):764–771
Article
PubMed
Google Scholar
Di Gregorio E, Borroni B, Giorgio E, Lacerenza D, Ferrero M, Lo Buono N et al (2014) ELOVL5 mutations cause spinocerebellar ataxia 38. Am J Hum Genet 95(2):209–217
Article
CAS
PubMed
PubMed Central
Google Scholar
Koide R, Ikeuchi T, Onodera O, Tanaka H, Igarashi S, Endo K et al (1994) Unstable expansion of CAG repeat in hereditary dentatorubral–pallidoluysian atrophy (DRPLA). Nat Genet 6(1):9–13
Article
CAS
PubMed
Google Scholar
Klein CJ, Botuyan MV, Wu Y, Ward CJ, Nicholson GA, Hammans S et al (2011) Mutations in DNMT1 cause hereditary sensory neuropathy with dementia and hearing loss. Nat Genet 43(6):595–600
Article
CAS
PubMed
PubMed Central
Google Scholar