Skip to main content

Advertisement

Log in

Role of Dynamic and Mitochondrial Mutations in Neurodegenerative Diseases with Ataxia: Lower Repeats and LNAs at Multiple Loci as Alternative Pathogenesis

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Spinocerebellar ataxia is a growing group of hereditary neurodegenerative diseases for which ≥30 different genetic loci have been identified. In this study, we assessed the repeats at eight spinocerebellar ataxia (SCA) loci in 188 clinical SCA patients and 100 individuals without any neurological signs. Results from the present study were able to identify 16/188 (8.5 %) clinical ataxia patients with repeat expansions in the pathological range of SCA genes, with the majority having expansion at the SCA1, 2, and 3 loci. The present study further evaluated two mitochondrial mutations associated with ataxia, i.e., T8993G and A8344G. Six patients were identified with A8344G mutation and none had the mutation in ATPase 6 gene; however, G8994A variation was found in three cases. Overall, three cases had triplet repeat expansions as well as mitochondrial (mt) mutations, which indicates potential association of triplet repeat expansions and mitochondrial mutations. Both the molecular analysis of several SCA loci and two relevant mt mutations indicated that the majority of ataxia cases were still undiagnosed; hence, the following hypotheses were proposed and tested based on available data: (i) lower repeats than normal range and (ii) large normal alleles (LNAs) at multiple loci may be an alternative basis for disease pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alluri RV, Komandur S, Wagheray A et al (2007) Molecular analysis of CAG repeats at five different spinocerebellar ataxia loci: correlation and alternative explanations for disease pathogenesis. Mol Cells 24(3):338–342

    CAS  PubMed  Google Scholar 

  • Al-Ramahi I, Perez AM, Lim J et al (2007) dAtaxin-2 mediates expanded Ataxin-1-induced neurodegeneration in a Drosophila model of SCA1. PLoS Genet Am J Hum Genet 66(3):830–840

    Google Scholar 

  • Bahl S, Virdi K, Mittal U et al (2005) Evidence of a common founder for SCA12 in the Indian population. Ann Hum Genet 69:528–534 (9419710273)

    Article  CAS  PubMed  Google Scholar 

  • Baskaran S, Brahmachari V (2000) Chromosomal fragility and human genetic disorders. Indian J Clin Biochem 15(Suppl 1):145–157

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Basu P, Chattopadhyay B, Gangopadhaya PK (2000) Analysis of CAG repeats in SCA1, SCA2, SCA3, SCA6, SCA7 and DRPLA loci in spinocerebellar ataxia patients and distribution of CAG repeats at the SCA1, SCA2 and SCA6 loci in nine ethnic populations of eastern India. Hum Genet 106(6):597–604

    Article  CAS  PubMed  Google Scholar 

  • Brahmachari SK, Meera G, Sarkar PS (1995) Simple repetitive sequences in the genome: structure and functional significance. Electrophoresis 16(9):1705–1714

    Article  CAS  PubMed  Google Scholar 

  • Cellini E, Nacmias B, Forleo P et al (2001) Genetic and clinical analysis of spinocerebellar ataxia type 8 repeat expansion in Italy. Arch Neurol 58(11):1856–1859

    Article  CAS  PubMed  Google Scholar 

  • Cummings CJ, Zoghbi HY (2000) Trinucleotide repeats: mechanisms and pathophysiology. Annu Rev Genomics Hum Genet 1:281–328

    Article  CAS  PubMed  Google Scholar 

  • Filla A, De Michele G, Cocozza S et al (2002) Early onset autosomal dominant dementia with ataxia, extrapyramidal features, and epilepsy. Neurology 58(6):922–928

    Article  CAS  PubMed  Google Scholar 

  • Gatchel JR, Zoghbi HY (2005) Diseases of unstable repeat expansion: mechanisms and common principles. Nat Rev Genet 6(10):743–755

    Article  CAS  PubMed  Google Scholar 

  • Hasan Q, Alluri RV, Rao P et al (2006) Role of glutamine deamidation in neurodegenerative diseases associated with triplet repeat expansions: a hypothesis. J Mol Neurosci 29(1):29–33

    Article  CAS  PubMed  Google Scholar 

  • Hsieh M, Lin SJ, Chen JF et al (2000) Identification of the spinocerebellar ataxia type 7 mutation in Taiwan: application of PCR-based Southern blot. J Neurol 247(8):623–629

    Article  CAS  PubMed  Google Scholar 

  • Imbert G, Saudou F, Yvert G et al (1996) Cloning of the gene for spinocerebellar ataxia 2 reveals a locus with high sensitivity to expanded CAG/glutamine repeats. Nat Genet 14(3):285–291

    Article  CAS  PubMed  Google Scholar 

  • Iwabuchi K, Tsuchiya K, Uchihara T (1999) Autosomal dominant spinocerebellar degenerations. Rev Neurol (Paris) 155:255–270

    CAS  Google Scholar 

  • Jacobi H, Minnerop M, Klockgether T (2013) The genetics of spinocerebellar ataxias. Nervenarzt 84(2):137–142

    Article  CAS  PubMed  Google Scholar 

  • Juvonen V, Hietala M, Kairisto V et al (2005) The occurrence of dominant spinocerebellar ataxias among 251 Finnish ataxia patients and the role of predisposing large normal alleles in a genetically isolated population. Acta Neurol Scand 111(3):154–162

    Article  CAS  PubMed  Google Scholar 

  • Kim JY, Park SS, Joo SI et al (2001) Molecular analysis of spinocerebellar ataxias in Koreans: frequencies and reference ranges of SCA1, SCA2, SCA3, SCA6 and SCA7. Mol Cells 12(3):336–341

    CAS  PubMed  Google Scholar 

  • Komandur S, Venkatasubramanian S, Alluri RV et al (2011) Mitochondrial insertion-deletion polymorphism: role in disease pathology. Genet Test Mol Biomarkers 15(5):361–364

    Article  CAS  PubMed  Google Scholar 

  • Kooy RF, Reyniers E, Storm K et al (1999) CAG repeat contraction in the androgen receptor gene in three brothers with mental retardation. Am J Med Genet 85(3):209–213

    Article  CAS  PubMed  Google Scholar 

  • Leggo J, Dalton A, Morrison PJ et al (1997) Analysis of spinocerebellar ataxia types 1, 2, 3, and 6, dentatorubral-pallidoluysian atrophy, and Friedreich’s ataxia genes in spinocerebellar ataxia patients in the UK. J Med Genet 34(12):982–985

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lieberman AP, Trojanowski JQ, Leonard DG (1999) Ataxin 1 and ataxin 3 in neuronal intranuclear inclusion disease. Ann Neurol 46(2):271–273

    Article  CAS  PubMed  Google Scholar 

  • Makela-Bengs P, Suomalainen A, Majander A et al (1995) Correlation between the clinical symptoms and the proportion of mitochondrial DNA carrying the 8993 point mutation in the NARP syndrome. Pediatr Res 37(5):634–639

    Article  CAS  PubMed  Google Scholar 

  • Matam K, Shaik NA, Aggarwal S et al (2014) Evidence for the presence of somatic mitochondrial DNA mutations in right atrial appendage tissues of coronary artery disease patients. Mol Genet Genomics 289(4):533–540

    Article  CAS  PubMed  Google Scholar 

  • Matsuura T (2008) Molecular and genetic analysis of spinocerebellar ataxia type 10 (SCA10). Rinsho Shinkeigaku 48(11):823–825

    Article  PubMed  Google Scholar 

  • McFarland R, Taylor RW, Turnbull DM (2010) A neurological perspective on mitochondrial disease. Lancet Neurol 9:829–840

    Article  CAS  PubMed  Google Scholar 

  • Nozaki H, Ikeuchi T, Kawakami A et al (2007) Clinical and genetic characterizations of 16q-linked autosomal dominant spinocerebellar ataxia (AD-SCA) and frequency analysis of AD-SCA in the Japanese population. Mov Disord 22(6):857–862

    Article  PubMed  Google Scholar 

  • Pulst SM, Nechiporuk A, Nechiporuk T et al (1996) Moderate expansion of a normally biallelic trinucleotide repeat in spinocerebellar ataxia type 2. Nat Genet 14(3):269–276

    Article  CAS  PubMed  Google Scholar 

  • Riess O, Laccone FA, Gispert S et al (1997) SCA2 trinucleotide expansion in German SCA patients. Neurogenetics 1(1):59–64

    Article  CAS  PubMed  Google Scholar 

  • Rossi M, Perez-Lloret S, Doldan L et al (2014) Autosomal dominant cerebellar ataxias: a systematic review of clinical features. Eur J Neurol 21(4):607–615

    Article  CAS  PubMed  Google Scholar 

  • Ruano L, Melo C, Silva MC et al (2014) The global epidemiology of hereditary ataxia and spastic paraplegia: a systematic review of prevalence studies. Neuroepidemiology 42(3):174–183

    Article  PubMed  Google Scholar 

  • Saleem Q, Sreevidya VS, Sudhir J et al (2000) Association analysis of CAG repeats at the KCNN3 locus in Indian patients with bipolar disorder and schizophrenia. Am J Med Genet 96(6):744–748

    Article  CAS  PubMed  Google Scholar 

  • Sanpei K, Takano H, Igarashi S et al (1996) Identification of the spinocerebellar ataxia type 2 gene using a direct identification of repeat expansion and cloning technique, DIRECT. Nat Genet 14(3):277–284

    Article  CAS  PubMed  Google Scholar 

  • Silveira I, Alonso I, Guimaraes L et al (2000) High germinal instability of the (CTG)n at the SCA8 locus of both expanded and normal alleles. Am J Hum Genet 66(3):830–840

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Silveira I, Miranda C, Guimaraes L et al (2002) Trinucleotide repeats in 202 families with ataxia: a small expanded (CAG)n allele at the SCA17 locus. Arch Neurol 59(4):623–629

    Article  CAS  PubMed  Google Scholar 

  • Stevanin G, Durr A, Brice A (2000) Clinical and molecular advances in autosomal dominant cerebellar ataxias: from genotype to phenotype and physiopathology. Eur J Hum Genet 8(1):4–18

    Article  CAS  PubMed  Google Scholar 

  • Takano H, Cancel G, Ikeuchi T et al (1998) Close associations between prevalences of dominantly inherited spinocerebellar ataxias with CAG-repeat expansions and frequencies of large normal CAG alleles in Japanese and Caucasian populations. Am J Hum Genet 63(4):1060–1066

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Truant R, Raymond LA, Xia J et al (2006) Canadian Association of Neurosciences Review: polyglutamine expansion neurodegenerative diseases. Can J Neurol Sci 33:278–291

    PubMed  Google Scholar 

  • Tsao CY, Mendell JR, Bartholomew D (2001) High mitochondrial DNA T8993G mutation (<90 %) without typical features of Leigh’s and NARP syndromes. J Child Neurol 16(7):533–535

    Article  CAS  PubMed  Google Scholar 

  • Uziel G, Moroni I, Lamantea E, Fratta et al (1997) Mitochondrial disease associated with the T8993G mutation of the mitochondrial ATPase 6 gene: a clinical, biochemical, and molecular study in six families. J Neurol Neurosurg Psychiatry 63(1):16–22

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • van de Warrenburg BP, Sinke RJ, Verschuuren-Bemelmans CC et al (2002) Spinocerebellar ataxias in the Netherlands: prevalence and age at onset variance analysis. Neurology 58(5):702–708

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qurratulain Hasan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gul Lone, W., Poornima, S., Meena, A.K. et al. Role of Dynamic and Mitochondrial Mutations in Neurodegenerative Diseases with Ataxia: Lower Repeats and LNAs at Multiple Loci as Alternative Pathogenesis. J Mol Neurosci 54, 837–847 (2014). https://doi.org/10.1007/s12031-014-0431-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-014-0431-3

Keywords

Navigation