Skip to main content
Log in

Development of a novel panel for blood identification based on blood-specific CpG-linked SNP markers

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

Blood-containing mixtures often appear in murder and robbery cases, and their identification plays a significant role in solving crimes. In recent years, the co-detection of DNA methylation markers (CpG) and single nucleotide polymorphism (SNP) markers has been shown to be a promising tool for the identification of semen and its donor. However, similar research on blood stains that are frequently found at crime scenes has not yet been reported. In this study, we employed blood-specific CpG-linked SNP markers (CpG-SNP) for blood-specific genotyping and the linking of blood and its donor. The tissue-specific CpG markers were screened from the literature and further verified by combining bisulfite conversion with amplification-refractory mutation system (ARMS) technology. Meanwhile, adjacent SNP markers with a minor allele frequency (MAF) greater than 0.1 were selected within 400 bp upstream and downstream of the CpG markers. SNP genotyping was performed using SNaPshot technology on a capillary electrophoresis (CE) platform. Finally, a multiplex panel, including 19 blood-specific CpG linked to 23 SNP markers, as well as 1 semen-specific CpG, 1 vaginal secretion-specific CpG, and 1 saliva-specific CpG marker, was constructed successfully. The panel showed good tissue specificity and blood stains stored at room temperature for up to nine months and moderately degraded (4 < DI < 10) could be effectively identified. Moreover, it could also be detected when blood content in the mixed stains was as low as 1%. In addition, 15 ng of DNA used for bisulfite conversion was required for obtaining a complete profile. The cumulative discrimination power of the panel among the Han population of northern China could reach 0.999983. This is the first investigation conducted for the simultaneous identification of blood and its donor regardless of other body fluids included in mixed stains. The successful construction of the panel will play a vital role in the comprehensive analysis of blood-containing mixtures in forensic practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary materials.

References

  1. Virkler K, Lednev IK (2009) Analysis of body fluids for forensic purposes: from laboratory testing to non-destructive rapid confirmatory identification at a crime scene. Forensic Sci Int 188(1-3):1–17. https://doi.org/10.1016/j.forsciint.2009.02.013

    Article  CAS  PubMed  Google Scholar 

  2. Zhang X, Li J, Liu J, Wang J, Liu Z, Liu Y, Zhang G (2022) Identification of the vaginal secretion donor in mixture stains using polymorphic cSNPs on mRNA biomarkers. Forensic Sci Int Genet 59:102703. https://doi.org/10.1016/j.fsigen.2022.102703

    Article  CAS  PubMed  Google Scholar 

  3. Liu Z, Gao Z, Wang J, Shi J, Liu J, Chen D, Li W, Guo J, Cheng X, Hao T, Li Z, Li Y, Yan J, Zhang G (2020) A method of identifying the blood contributor in mixture stains through detecting blood-specific mRNA polymorphism. Electrophoresis 41(15):1364–1373. https://doi.org/10.1002/elps.202000053

    Article  CAS  PubMed  Google Scholar 

  4. Juusola J, Ballantyne J (2003) Messenger RNA profiling: a prototype method to supplant conventional methods for body fluid identification. Forensic Sci Int 135(2):85–96. https://doi.org/10.1016/s0379-0738(03)00197-x

    Article  CAS  PubMed  Google Scholar 

  5. Frumkin D, Wasserstrom A, Budowle B, Davidson A (2011) DNA methylation-based forensic tissue identification. Forensic Sci Int Genet 5(5):517–524. https://doi.org/10.1016/j.fsigen.2010.12.001

    Article  CAS  PubMed  Google Scholar 

  6. Lee HY, Park MJ, Choi A, An JH, Yang WI, Shin KJ (2012) Potential forensic application of DNA methylation profiling to body fluid identification. Int J Legal Med 126(1):55–62. https://doi.org/10.1007/s00414-011-0569-2

    Article  PubMed  Google Scholar 

  7. Park JL, Kwon OH, Kim JH, Yoo HS, Lee HC, Woo KM, Kim SY, Lee SH, Kim YS (2014) Identification of body fluid-specific DNA methylation markers for use in forensic science. Forensic Sci Int Genet 13:147–153. https://doi.org/10.1016/j.fsigen.2014.07.011

    Article  CAS  PubMed  Google Scholar 

  8. Moore LD, Le T, Fan G (2013) DNA methylation and its basic function. Neuropsychopharmacology 38(1):23–38. https://doi.org/10.1038/npp.2012.112

    Article  CAS  PubMed  Google Scholar 

  9. An JH, Choi A, Shin KJ, Yang WI, Lee HY (2013) DNA methylation-specific multiplex assays for body fluid identification. Int J Legal Med 127(1):35–43. https://doi.org/10.1007/s00414-012-0719-1

    Article  PubMed  Google Scholar 

  10. Madi T, Balamurugan K, Bombardi R, Duncan G, McCord B (2012) The determination of tissue-specific DNA methylation patterns in forensic biofluids using bisulfite modification and pyrosequencing. Electrophoresis 33(12):1736–1745. https://doi.org/10.1002/elps.201100711

    Article  CAS  PubMed  Google Scholar 

  11. Wasserstrom A, Frumkin D, Davidson A, Shpitzen M, Herman Y, Gafny R (2013) Demonstration of DSI-semen—a novel DNA methylation-based forensic semen identification assay. Forensic Sci Int Genet 7(1):136–142. https://doi.org/10.1016/j.fsigen.2012.08.009

    Article  CAS  PubMed  Google Scholar 

  12. Choi A, Shin K-J, Yang WI, Lee HY (2013) Body fluid identification by integrated analysis of DNA methylation and body fluid-specific microbial DNA. Int J Legal Med 128(1):33–41. https://doi.org/10.1007/s00414-013-0918-4

    Article  PubMed  Google Scholar 

  13. Antunes J, Silva DS, Balamurugan K, Duncan G, Alho CS, McCord B (2016) High-resolution melt analysis of DNA methylation to discriminate semen in biological stains. Anal Biochem 494:40–45. https://doi.org/10.1016/j.ab.2015.10.002

    Article  CAS  PubMed  Google Scholar 

  14. Ghai M, Naidoo N, Evans DL, Kader F (2020) Identification of novel semen and saliva specific methylation markers and its potential application in forensic analysis. Forensic Sci Int Genet 49:102392. https://doi.org/10.1016/j.fsigen.2020.102392

    Article  CAS  PubMed  Google Scholar 

  15. Lin YC, Tsai LC, Lee JC, Su CW, Tzen JT, Linacre A, Hsieh HM (2016) Novel identification of biofluids using a multiplex methylation sensitive restriction enzyme-PCR system. Forensic Sci Int Genet 25:157–165. https://doi.org/10.1016/j.fsigen.2016.08.011

    Article  CAS  PubMed  Google Scholar 

  16. Silva D, Antunes J, Balamurugan K, Duncan G, Alho CS, McCord B (2016) Developmental validation studies of epigenetic DNA methylation markers for the detection of blood, semen and saliva samples. Forensic Sci Int Genet 23:55–63. https://doi.org/10.1016/j.fsigen.2016.01.017

    Article  CAS  PubMed  Google Scholar 

  17. Vidaki A, Giangasparo F, Syndercombe Court D (2016) Discovery of potential DNA methylation markers for forensic tissue identification using bisulphite pyrosequencing. Electrophoresis 37(21):2767–2779. https://doi.org/10.1002/elps.201600261

    Article  CAS  PubMed  Google Scholar 

  18. Watanabe K, Akutsu T, Takamura A, Sakurada K (2016) Evaluation of a blood-specific DNA methylated region and trial for allele-specific blood identification from mixed body fluid DNA. Leg Med (Tokyo) 22:49–53. https://doi.org/10.1016/j.legalmed.2016.08.004

    Article  CAS  PubMed  Google Scholar 

  19. Watanabe K, Taniguchi K, Akutsu T (2018) Development of a DNA methylation-based semen-specific SNP typing method: a new approach for genotyping from a mixture of body fluids. Forensic Sci Int Genet 37:227–234. https://doi.org/10.1016/j.fsigen.2018.09.004

    Article  CAS  PubMed  Google Scholar 

  20. Watanabe K, Taniguchi K, Toyomane K, Akutsu T (2022) A new approach for forensic analysis of saliva-containing body fluid mixtures based on SNPs and methylation patterns of nearby CpGs. Forensic Sci Int Genet 56:102624. https://doi.org/10.1016/j.fsigen.2021.102624

    Article  CAS  PubMed  Google Scholar 

  21. Xie B, Song F, Wang S, Zhang K, Li Y, Luo H (2020) Exploring a multiplex DNA methylation-based SNP typing method for body fluids identification: as a preliminary report. Forensic Sci Int 313:110329. https://doi.org/10.1016/j.forsciint.2020.110329

    Article  CAS  PubMed  Google Scholar 

  22. Boyd VL, Zon G (2004) Bisulfite conversion of genomic DNA for methylation analysis: protocol simplification with higher recovery applicable to limited samples and increased throughput. Anal Biochem 326(2):278–280. https://doi.org/10.1016/j.ab.2003.11.020

    Article  CAS  PubMed  Google Scholar 

  23. Li Z, Li Y, Liu N, Yuan F, Liu F, Liu J, Yun K, Yan J, Zhang G (2022) Typing of semen-containing mixtures using ARMS-based semen-specific CpG-InDel/STR markers. Int J Legal Med 136(4):1163–1176. https://doi.org/10.1007/s00414-022-02843-9

    Article  PubMed  Google Scholar 

  24. Kaminsky Z, Petronis A (2009) Methylation SNaPshot: a method for the quantification of site-specific DNA methylation levels. In: Tost J (ed) DNA Methylation: Methods and Protocols. Humana Press, Totowa, NJ, pp 241–255

    Chapter  Google Scholar 

  25. Jung SE, Cho S, Antunes J, Gomes I, Uchimoto ML, Oh YN, Di Giacomo L, Schneider PM, Park MS, van der Meer D, Williams G, McCord B, Ahn HJ, Choi DH, Lee YH, Lee SD, Lee HY (2016) A collaborative exercise on DNA methylation based body fluid typing. Electrophoresis 37(21):2759–2766. https://doi.org/10.1002/elps.201600256

    Article  CAS  PubMed  Google Scholar 

  26. Lee HY, An JH, Jung SE, Oh YN, Lee EY, Choi A, Yang WI, Shin KJ (2015) Genome-wide methylation profiling and a multiplex construction for the identification of body fluids using epigenetic markers. Forensic Sci Int Genet 17:17–24. https://doi.org/10.1016/j.fsigen.2015.03.002

    Article  CAS  PubMed  Google Scholar 

  27. Mehta B, Daniel R, Phillips C, McNevin D (2017) Forensically relevant SNaPshot((R)) assays for human DNA SNP analysis: a review. Int J Legal Med 131(1):21–37. https://doi.org/10.1007/s00414-016-1490-5

    Article  PubMed  Google Scholar 

  28. Lin YC, Tsai LC, Lee JC, Liu KL, Tzen JT, Linacre A, Hsieh HM (2016) Novel identification of biofluids using a multiplex methylation-specific PCR combined with single-base extension system. Forensic Sci Med Pathol 12(2):128–138. https://doi.org/10.1007/s12024-016-9763-3

    Article  CAS  PubMed  Google Scholar 

  29. Little S (1995) Amplification-Refractory Mutation System (ARMS) Analysis of point mutations. Curr Protoc Hum Genet 7(1):9.8.1–9.8.12. https://doi.org/10.1002/0471142905.hg0908s07

    Article  Google Scholar 

  30. Ye S, Dhillon S, Ke X, Collins AR, Day INM (2001) An efficient procedure for genotyping single nucleotide polymorphisms. Nucleic Acids Res 29(17):e88–e88. https://doi.org/10.1093/nar/29.17.e88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Vernarecci S, Ottaviani E, Agostino A, Mei E, Calandro L, Montagna P (2015) Quantifiler ® Trio Kit and forensic samples management: a matter of degradation. Forensic Sci Int Genet 16:77–85. https://doi.org/10.1016/j.fsigen.2014.12.005

    Article  CAS  PubMed  Google Scholar 

  32. Shi YY, He L (2005) SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci. Cell Res 15(2):97–98. https://doi.org/10.1038/sj.cr.7290272

    Article  CAS  PubMed  Google Scholar 

  33. Lewontin RC (1988) On measures of gametic disequilibrium. Genetics 120(3):849–852. https://doi.org/10.1093/genetics/120.3.849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Li Z, Li J, Li Y, Liu N, Liu F, Ren J, Yun K, Yan J, Zhang G (2021) Development of a multiplex methylation-sensitive restriction enzyme-based SNP typing system for deconvolution of semen-containing mixtures. Int J Legal Med 135(4):1281–1294. https://doi.org/10.1007/s00414-021-02552-9

    Article  PubMed  Google Scholar 

  35. Tian H, Bai P, Tan Y, Li Z, Peng D, Xiao X, Zhao H, Zhou Y, Liang W, Zhang L (2020) A new method to detect methylation profiles for forensic body fluid identification combining ARMS-PCR technique and random forest model. Forensic Sci Int Genet 49:102371. https://doi.org/10.1016/j.fsigen.2020.102371

    Article  CAS  PubMed  Google Scholar 

  36. Ballantyne KN, van Oorschot RA, Mitchell RJ (2011) Increased amplification success from forensic samples with locked nucleic acids. Forensic Sci Int Genet 5(4):276–280. https://doi.org/10.1016/j.fsigen.2010.04.001

    Article  CAS  PubMed  Google Scholar 

  37. Hayatsu H (2008) Discovery of bisulfite-mediated cytosine conversion to uracil, the key reaction for DNA methylation analysis--a personal account. Proc Jpn Acad Ser B Phys Biol Sci 84(8):321–330. https://doi.org/10.2183/pjab.84.321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Grunau C, Clark SJ, Rosenthal A (2001) Bisulfite genomic sequencing: systematic investigation of critical experimental parameters. Nucleic Acids Res 29(13):e65–e65. https://doi.org/10.1093/nar/29.13.e65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tanaka K, Okamoto A (2007) Degradation of DNA by bisulfite treatment. Bioorg Med Chem Lett 17(7):1912–1915. https://doi.org/10.1016/j.bmcl.2007.01.040

    Article  CAS  PubMed  Google Scholar 

  40. Hong SR, Shin KJ (2021) Bisulfite-converted DNA quantity evaluation: a multiplex quantitative real-time PCR system for evaluation of bisulfite conversion. Front Genet 12:618955. https://doi.org/10.3389/fgene.2021.618955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Leontiou CA, Hadjidaniel MD, Mina P, Antoniou P, Ioannides M, Patsalis PC (2015) Bisulfite conversion of DNA: performance comparison of different kits and methylation quantitation of epigenetic biomarkers that have the potential to be used in non-invasive prenatal testing. PLoS One 10(8):e0135058. https://doi.org/10.1371/journal.pone.0135058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Liu Y, Siejka-Zielinska P, Velikova G, Bi Y, Yuan F, Tomkova M, Bai C, Chen L, Schuster-Bockler B, Song CX (2019) Bisulfite-free direct detection of 5-methylcytosine and 5-hydroxymethylcytosine at base resolution. Nat Biotechnol 37(4):424–429. https://doi.org/10.1038/s41587-019-0041-2

    Article  CAS  PubMed  Google Scholar 

  43. Wang J, McCord B (2011) The application of magnetic bead hybridization for the recovery and STR amplification of degraded and inhibited forensic DNA. Electrophoresis 32(13):1631–1638. https://doi.org/10.1002/elps.201000694

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Basic Research Program of Shanxi Province [No. 20210302123313] and the National Natural Science Foundation of China [No. 81701868, No. 82171876 and No. 82030058].

Author information

Authors and Affiliations

Authors

Contributions

The authors, Gengqian Zhang and Zeqin Li, were responsible for experimental conception and design. Zeqin Li, Na Liu, Fang Yuan, and Zimeng Guan carried out experimental preparation, operation, and data processing. The first draft of the manuscript was written by Zeqin Li and Na Liu. Zimeng Guan, Jinding Liu, Feng Liu, and Jianbo Ren gave valuable opinions and suggestions on the writing and revision of the manuscript. The authors Gengqian Zhang and Jiangwei Yan revised it critically for important intellectual content. All authors approved the final manuscript.

Corresponding authors

Correspondence to Jiangwei Yan or Gengqian Zhang.

Ethics declarations

Ethics approval

Approval was obtained from the ethics committee of Shanxi Medical University (No. 2021GLL052). The procedures used in this study adhere to the tenets of the Declaration of Helsinki.

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Consent for publication

The authors affirm that human research participants provided informed consent for the publication of the data in Supplementary Table S7.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(PDF 221 kb)

ESM 2

(PDF 1457 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Liu, N., Yuan, F. et al. Development of a novel panel for blood identification based on blood-specific CpG-linked SNP markers. Int J Legal Med 138, 1205–1219 (2024). https://doi.org/10.1007/s00414-023-03105-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-023-03105-y

Keywords

Navigation