Skip to main content

Advertisement

Log in

DNA methylation-specific multiplex assays for body fluid identification

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

Recent advances in whole-genome epigenetic analysis indicate that chromosome segments called tissue-specific differentially methylated regions (tDMRs) show different DNA methylation profiles according to cell or tissue type. Therefore, body fluid-specific differential DNA methylation is a promising indicator for body fluid identification. However, DNA methylation patterns are susceptible to change in response to environmental factors and aging. Therefore, we investigated age-related methylation changes in semen-specific tDMRs using body fluids from young and elderly men. After confirming the stability of the body fluid-specific DNA methylation profile over time, two different multiplex PCR systems were constructed using methylation-sensitive restriction enzyme PCR and methylation SNaPshot, in order to analyze the methylation status of specific CpG sites from the USP49, DACT1, PRMT2, and PFN3 tDMRs. Both multiplex systems could successfully identify semen with spermatozoa and could differentiate menstrual blood and vaginal fluids from blood and saliva. Although including more markers for body fluid identification might be necessary, this study adds to the support that body fluid identification by DNA methylation profiles could be a valuable tool for forensic analysis of body fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kayser M, de Knijff P (2011) Improving human forensics through advances in genetics, genomics and molecular biology. Nat Rev Genet 12:179–192

    Article  PubMed  CAS  Google Scholar 

  2. Virkler K, Lednev IK (2009) Analysis of body fluids for forensic purposes: from laboratory testing to non-destructive rapid confirmatory identification at a crime scene. Forensic Sci Int 188:1–17

    Article  PubMed  CAS  Google Scholar 

  3. Bauer M, Polzin S, Patzelt D (2003) Quantification of RNA degradation by semi-quantitative duplex and competitive RT-PCR: a possible indicator of the age of bloodstains? Forensic Sci Int 138:94–103

    Article  PubMed  CAS  Google Scholar 

  4. Bauer M, Patzelt D (2002) Evaluation of mRNA markers for the identification of menstrual blood. J Forensic Sci 47:1278–1282

    PubMed  CAS  Google Scholar 

  5. Juusola J, Ballantyne J (2003) Messenger RNA profiling: a prototype method to supplant conventional methods for body fluid identification. Forensic Sci Int 135:85–96

    Article  PubMed  CAS  Google Scholar 

  6. Juusola J, Ballantyne J (2005) Multiplex mRNA profiling for the identification of body fluids. Forensic Sci Int 152:1–12

    Article  PubMed  CAS  Google Scholar 

  7. Nussbaumer C, Gharehbaghi-Schnell E, Korschineck I (2006) Messenger RNA profiling: a novel method for body fluid identification by real-time PCR. Forensic Sci Int 157:181–186

    Article  PubMed  CAS  Google Scholar 

  8. Juusola J, Ballantyne J (2007) mRNA profiling for body fluid identification by multiplex quantitative RT-PCR. J Forensic Sci 52:1252–1262

    PubMed  CAS  Google Scholar 

  9. Zubakov D, Hanekamp E, Kokshoorn M, van Ijcken W, Kayser M (2008) Stable RNA markers for identification of blood and saliva stains revealed from whole genome expression analysis of time-wise degraded samples. Int J Legal Med 122:135–142

    Article  PubMed  Google Scholar 

  10. Hanson EK, Lubenow H, Ballantyne J (2009) Identification of forensically relevant body fluids using a panel of differentially expressed microRNAs. Anal Biochem 387:303–314

    Article  PubMed  CAS  Google Scholar 

  11. Setzer M, Juusola J, Ballantyne J (2008) Recovery and stability of RNA in vaginal swabs and blood, semen, and saliva stains. J Forensic Sci 53:296–305

    Article  PubMed  CAS  Google Scholar 

  12. Zubakov D, Kokshoorn M, Kloosterman A, Kayser M (2009) New markers for old stains: stable mRNA markers for blood and saliva identification from up to 16-year-old stains. Int J Legal Med 123:71–74

    Article  PubMed  Google Scholar 

  13. Haas C, Klesser B, Maake C, Bär W, Kratzer A (2009) mRNA profiling for body fluid identification by reverse transcription endpoint PCR and realtime PCR. Forensic Sci Int Genet 3:80–88

    Article  PubMed  CAS  Google Scholar 

  14. Frumkin D, Wasserstrom A, Budowle B, Davidson A (2011) DNA methylation-based forensic tissue identification. Forensic Sci Int Genet 5:517–524

    Article  PubMed  CAS  Google Scholar 

  15. Lee HY, Park MJ, Choi A, An JH, Yang WI, Shin KJ (2012) Potential forensic application of DNA methylation profiling to body fluid identification. Int J Legal Med 126:55–62

    Article  PubMed  Google Scholar 

  16. Holliday R, Pugh JE (1975) DNA modification mechanisms and gene activity during development. Science 187:226–232

    Article  PubMed  CAS  Google Scholar 

  17. Bird AP (1986) CpG-rich islands and the function of DNA methylation. Nature 321:209–213

    Article  PubMed  CAS  Google Scholar 

  18. Russo VEA, Martienssen RA, Riggs AD (1996) Epigenetic mechanisms of gene regulation. Cold Spring Harbor Laboratory Press, Plainview

    Google Scholar 

  19. Byun HM, Siegmund KD, Pan F, Weisenberger DJ, Kanel G, Laird PW, Yang AS (2009) Epigenetic profiling of somatic tissues from human autopsy specimens identifies tissue- and individual-specific DNA methylation patterns. Hum Mol Genet 18:4808–4817

    Article  PubMed  CAS  Google Scholar 

  20. Song F, Smith JF, Kimura MT, Morrow AD, Matsuyama T, Nagase H, Held WA (2005) Association of tissue-specific differentially methylated regions (TDMs) with differential gene expression. Proc Natl Acad Sci U S A 102:3336–3341

    Article  PubMed  CAS  Google Scholar 

  21. Ohgane J, Yagi S, Shiota K (2008) Epigenetics: the DNA methylation profile of tissue-dependent and differentially methylated regions in cells. Placenta 29:S29–35

    Article  PubMed  Google Scholar 

  22. Illingworth R, Kerr A, Desousa D, Jørgensen H, Ellis P, Stalker J, Jackson D, Clee C, Plumb R, Rogers J, Humphray S, Cox T, Langford C, Bird A (2008) A novel CpG island set identifies tissue-specific methylation at developmental gene loci. PLoS Biol 6:e22

    Article  PubMed  Google Scholar 

  23. Wilson VL, Smith RA, Ma S, Cutler RG (1987) Genomic 5-methyldeoxycytidine decreases with age. J Biol Chem 262:9948–9951

    PubMed  CAS  Google Scholar 

  24. Fuke C, Shimabukuro M, Petronis A, Sugimoto J, Oda T, Miura K, Miyazaki T, Ogura C, Okazaki Y, Jinno Y (2004) Age related changes in 5-methylcytosine content in human peripheral leukocytes and placentas: an HPLC-based study. Ann Hum Genet 68:196–204

    Article  PubMed  CAS  Google Scholar 

  25. Christensen BC, Houseman EA, Marsit CJ, Zheng S, Wrensch MR, Wiemels JL, Nelson HH, Karagas MR, Padbury JF, Bueno R, Sugarbaker DJ, Yeh RF, Wiencke JK, Kelsey KT (2009) Aging and environmental exposures alter tissue-specific DNA methylation dependent upon CpG island context. PLoS Genet 5:e1000602

    Article  PubMed  Google Scholar 

  26. Bock C, Reither S, Mikeska T, Paulsen M, Walter J, Lengauer T (2005) BiQ Analyzer: visualization and quality control for DNA methylation data from bisulfite sequencing. Bioinformatics 21:4067–4068

    Article  PubMed  CAS  Google Scholar 

  27. Rohde C, Zhang Y, Jurkowski TP, Stamerjohanns H, Reinhardt R, Jeltsch A (2008) Bisulfite sequencing Data Presentation and Compilation (BDPC) web server—a useful tool for DNA methylation analysis. Nucleic Acids Res 36:e34

    Article  PubMed  Google Scholar 

  28. Kaminsky Z, Petronis A (2009) Methylation SNaPshot: a method for the quantification of site-specific DNA methylation levels. Meth Mol Biol 507:241–255

    Article  CAS  Google Scholar 

  29. Li LC, Dahiya R (2002) MethPrimer: designing primers for methylation PCRs. Bioinformatics 18:1427–1431

    Article  PubMed  CAS  Google Scholar 

  30. You FM, Huo N, Gu YQ, Luo MC, Ma Y, Hane D, Lazo GR, Dvorak J, Anderson OD (2008) BatchPrimer3: a high throughput web application for PCR and sequencing primer design. BMC Bioinformatics 9:253

    Article  PubMed  Google Scholar 

  31. Frumkin D, Wasserstrom A, Davidson A, Grafit A (2010) Authentication of forensic DNA samples. Forensic Sci Int Genet 4:95–103

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010-0005208).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hwan Young Lee.

Additional information

Ja Hyun An and Ajin Choi equally contributed to this work.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

ESM 1

(PDF 67 kb)

ESM 2

(PDF 19 kb)

ESM 3

(PDF 27 kb)

ESM 4

(PDF 1.24 mb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

An, J.H., Choi, A., Shin, KJ. et al. DNA methylation-specific multiplex assays for body fluid identification. Int J Legal Med 127, 35–43 (2013). https://doi.org/10.1007/s00414-012-0719-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-012-0719-1

Keywords

Navigation