Skip to main content
Log in

A global perspective of forensic entomology case reports from 1935 to 2022

  • Review
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

Forensic entomology case reports are the product of rapid development in the field, the widespread acceptance of the science and the application of forensic entomological knowledge. In this study, we retrospectively summarized information derived from 307 forensic entomology case reports from 1935 to 2022 from a global perspective. Our checklist of relevant information included insect species, specific indoor or outdoor preferences, preferred temperatures, and stages of body decomposition. Finally, a concept and calculation method for postmortem interval (PMI) estimation accuracy was proposed. There were 232 cases using insect developmental data and 28 cases using succession patterns to estimate PMI. A total of 146 species of insects were involved in the cases, of which 62.3% were Diptera and 37.7% were Coleoptera. Postmortem intervals were estimated from eggs in 4 cases, larvae in 180 cases, pupae in 45 cases, and puparia in 38 cases. The majority of cases were from June to October, and the average number of species mentioned in the cases was more at 15–30 °C. Considering the standardization of application, in the majority of cases, insect evidence was collected by other personnel and sent to forensic entomologists, there was a delay in the sampling, and the scene or meteorological data were directly used without correcting. Our data shows that there are still many shortcomings in the universality and standardization of forensic entomology in its practical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets generated during the current study are available from the corresponding author on reasonable request.

References

  1. Giles HA (1924) The “Hsi Yuan Lu” or “Instructions to coroners”: translated from the Chinese. Bale & Danielsson, London

    Book  Google Scholar 

  2. Tźu S (1981) The Washing Away of Wrongs (Original title: Hsi Yüan chi lu). University of Michigan, Center for Chinese Studies

    Google Scholar 

  3. Fu LKT (2004) Sung Tz’u (1186–1249) and Medical Jurisprudence in Ancient China. J Med Biog 12:95–104

    Article  Google Scholar 

  4. Bergeret M (1855) Infanticide, momification naturelle du cadavre. Découverte du cadavre d’un enfant nouveau-né dans une cheminée où il s’était momifié. Détermination de l’époque de la naissance par la présence de nymphes et de larves d’insectes dans le cadavre et par l’étude de leurs métamorphoses. Ann Hyg Med Leg 4:442–452

    Google Scholar 

  5. Davies W (1930) Parasitism in relation to pupation in Lucilia sericata. Mag Nat 125:779–780

    Article  Google Scholar 

  6. Morley C (1907) Ten years’ work among vertebrate carrion. Entomol Monthly Mag 43:45–51

    Google Scholar 

  7. Whiting PW (1914) Observations on blow flies; duration of the prepupal stage and color determination. Biol Bull Marine Biol Lab Woods Hole 26:184–194

    Article  Google Scholar 

  8. Davis WT (1915) Silpha surinamensis and Creophilus villosus as predaceous insects. J N Y Entomol Soc 23:150–151

    Google Scholar 

  9. Graham-Smith GS (1916) Observations on the habits and parasites of common flies. Parasitology 8:440–544

    Article  Google Scholar 

  10. Malloch JR (1917) A preliminary classification of Diptera, exclusive of pupipara, based upon larval and pupal characters, with keys to imagines in certain families. Part 1. Bull Illinois State Lab Nat Hist 12:161–409

    Article  Google Scholar 

  11. Smirnov E, Zhelochovtsev AN (1926) Change of characteristics in Calliphora erythrocephala Mg. under the influence of shortened feeding periods of the larval stages. Wilh Roux’ Arch 108:579–595

    Article  Google Scholar 

  12. Steele BF (1927) Notes on the feeding habits of carrion beetles. J N Y Entomol Soc 35:77–81

    Google Scholar 

  13. Wardle RA (1927) The seasonal frequency of calliphorine blowflies in Great Britain. J Hyg 26:441–464

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Davies W (1929) Hibernation of Lucilia sericata. Mag Nat 123:759–760

    Article  Google Scholar 

  15. Miller DF (1929) Determining the effects of change in temperature upon the locomotor movements of fly larvae. J Exp Zool 52:293–313

    Article  Google Scholar 

  16. Peredelsky AA, Pastuchova A (1930) Der Einfluß der Nahrungsmengen auf die Dynamik einiger Erscheinungen im Leben der Schmeißfliege. Biologia Generalis 6:327–352

    Google Scholar 

  17. Wardle RA (1930) Significant variables in the blowfly environment. Ann Appl Biol 17:554–574

    Article  Google Scholar 

  18. Heymons R, von Lengerken H (1931) Studien über die Lebenserscheinungen der Silphini (Coleopt.) VII. Oecoptoma thoracica L. (Studies on the ecology of Silphini (Coleoptera): Oecoptoma thoracica). Z Morph Ökol Tiere 20:691–706

    Article  Google Scholar 

  19. Hobson RP (1932) Studies on the nutrition of blow-fly Larvae. III. The liquefaction of muscle. J Exp Biol 9:359–365

    Article  CAS  Google Scholar 

  20. Mellanby K (1932) The influence of atmospheric humidity on the thermal death point of a number of insects. J Exp Biol 9:222–231

    Article  CAS  Google Scholar 

  21. Pukowski E (1933) Ökologische Untersuchungen an Necrophorus F. (Ecological investigations on Necrophorus F.) Z Morphol Ökol Tiere 27:518–586

    Article  Google Scholar 

  22. Walsh GB (1933) Studies in the British necrophagous Coleoptera. II. The attractive powers of various natural baits. Entomol Monthly Mag 69:28–32

    Google Scholar 

  23. Fuller ME (1934) The insect inhabitants of carrion: a study in animal ecology. Bull Council Sci Ind Res 82:1–63

    Google Scholar 

  24. Voris R (1934) Biologic investigations on the Staphylinidae (Coleoptera). Trans Acad Sci (St. Louis) 28:233–261

    Google Scholar 

  25. Hartung E (1935) Untersuchungen über die Geruchsorientierung bei Calliphora erythrocephala. Zeitschrift für vergleichende Physiologie 22:119–144

    Article  Google Scholar 

  26. Fraenkel G (1936) Observations and experiments on the blow-fly (Calliphora erythrocephala) during the first day after emergence. Proc Zool Soc (Lond.) 103:893–904

    Google Scholar 

  27. Knipling EF (1936) A comparative study of the first-instar larvae of the genus Sarcophaga (Calliphoridae, Diptera), with notes on its biology. J Parasitol 22:417–454

    Article  Google Scholar 

  28. Laake EW, Cushing EC, Parish HE (1936) Biology of the primary screw worm fly, Cochliomyia americana, and a comparison of its stages with those of C. macellaria. Tech Bull US Dept Agric 500:1–24

    Google Scholar 

  29. Kaufmann R (1937) Investigations on beetles associated with carrion in Pannal Ash, near Harrogate, I–III. Entomol Monthly Mag 73:78–81 227-233 and 268-272

    Google Scholar 

  30. Hobson RP (1938) Sheep blow-fly investigations. VII. Observations on the development of eggs and oviposition in the sheep blow-fly, Lucilia sericata. Mg Ann Appl Biol 25:573–582

    Article  CAS  Google Scholar 

  31. Clausen CP (1940) Entomophagous Insects. Mc-Graw Hill, New York

    Google Scholar 

  32. Deonier CC (1940) Carcass temperatures and their relation to winter blowfly populations and activity in the southwest. J Econ Entomol 33:166–170

    Article  Google Scholar 

  33. Dorsey CK (1940) A comparative study of the larvae of six species of Silpha (Coleoptera, Silphidae). Ann Entomol Soc Am 33:120–139

    Article  Google Scholar 

  34. Travis BV, Knipling EF, Brody AL (1940) Lateral migration and depth of pupation of the larvae of the primary screwworm Cochliomyia americana C. and P. J Econ Entomol 33:847–850

    Article  Google Scholar 

  35. Leclercq M, Quinet L (1949) Quelques cas d’application de l’entomologie a la détermination de l’époque de mort (Several cases concerning the application of entomology on determination of postmortem interval). Ann Med Lég 29:324–326

    Google Scholar 

  36. Nuorteva P, Isokoski M, Laiho K (1967) Studies on the possibilities of using blowflies (Dipt.) as medicolegal indicators in Finland. 1. Report of four indoor cases from the city of Helsinki. Ann Entomol Fenn 33:217–225

    Google Scholar 

  37. Leclercq M (1968) Entomologie en Gerechtelijke Geneeskunde. Tijdschrift voor Geneeskunde 22:1193–1198

    Google Scholar 

  38. Nuorteva P, Schumann H, Isokoski M, Laiho K (1974) Studies on the possibilities of using blowflies (Dipt., Calliphoridae) as medicolegal indicators in Finland. 2. Four cases where species identification was performed from larvae. Ann Entmol Fenn 40:70–74

    Google Scholar 

  39. Nuorteva P (1974) Age determination of a blood stain in a decaying shirt by entomological means. Forensic Sci 3:89–94

    Article  CAS  PubMed  Google Scholar 

  40. Goff ML, Odom CB (1987) Forensic entomology in the Hawaiian Islands: three case studies. Am J Forensic Med Pathol 8:45–50

    Article  CAS  PubMed  Google Scholar 

  41. Mann RW, Bass WM, Meadows L (1990) Time since death and decomposition of the human body: variables and observations in case and experimental field studies. J Forensic Sci 35:103–111

    Article  CAS  PubMed  Google Scholar 

  42. Benecke M (2001) A brief history of forensic entomology. Forensic Sci Int 120:2–14

    Article  CAS  PubMed  Google Scholar 

  43. Amendt J, Krettek R, Zehner R (2004) Forensic entomology. Naturwissenschaften 91:51–65

    Article  CAS  PubMed  Google Scholar 

  44. Matuszewski S (2021) Post-mortem interval estimation based on insect evidence: current challenges. Insects 12:314

    Article  PubMed  PubMed Central  Google Scholar 

  45. Amendt J, Campobasso CP, Gaudry E, Reiter C, LeBlanc HN, JR Hall M (2007) Best practice in forensic entomology—standards and guidelines. Int J Legal Med 121: 90-104.

  46. Payne JA (1965) A summer carrion study of the baby pig Sus scrofa Linnaeus. Ecology 46:592–602

    Article  Google Scholar 

  47. Anderson GS, VanLaerhoven SL (1996) Initial studies on insect succession on carrion in southwestern British Columbia. J Forensic Sci 41:617–625

    Article  Google Scholar 

  48. Grassberger M, Frank C (2004) Initial study of arthropod succession on pig carrion in a central European urban habitat. J Med Entomol 41:511–523

    Article  CAS  PubMed  Google Scholar 

  49. Carvalho LMLD, Thyssen PJ, Linhares AX, Palhares FAB (2000) A checklist of arthropods associated with pig carrion and human corpses in Southeastern Brazil. Mem Inst Oswaldo Cruz 95:135–138

    Article  CAS  PubMed  Google Scholar 

  50. Archer MS (2004) The ecology of invertebrate associations with vertebrate carrion in Victoria, with reference to forensic entomology. Department of Zoology, The University of Melbourne

    Google Scholar 

  51. Tantawi TI, El-Kady EM, Greenberg B, El-Ghaffar HA (1996) Arthropod succession on exposed rabbit carrion in Alexandria, Egypt. J Med Entomol 33:566–580

    Article  CAS  PubMed  Google Scholar 

  52. Centeno N, Maldonado M, Oliva A (2002) Seasonal patterns of arthropods occurring on sheltered and unsheltered pig carcasses in Buenos Aires Province (Argentina). Forensic Sci Int 126:63–70

    Article  CAS  PubMed  Google Scholar 

  53. Sharanowski BJ, Walker EG, Anderson GS (2008) Insect succession and decomposition patterns on shaded and sunlit carrion in Saskatchewan in three different seasons. Forensic Sci Int 179:219–240

    Article  PubMed  Google Scholar 

  54. Wang JF, Li ZG, Chen YC, Chen QS, Yin XH (2008) The succession and development of insects on pig carcasses and their significances in estimating PMI in south China. Forensic Sci Int 179:11–18

    Article  PubMed  Google Scholar 

  55. Lee Goff M (2009) Early post-mortem changes and stages of decomposition in exposed cadavers. Exp Appl Acarol 49:21–36

    Article  CAS  PubMed  Google Scholar 

  56. Byrd JH, Allen JC (2001) The development of the black blow fly, Phormia regina (Meigen). Forensic Sci Int 120:79–88

    Article  CAS  PubMed  Google Scholar 

  57. Grassberger M, Reiter C (2001) Effect of temperature on Lucilia sericata (Diptera: Calliphoridae) development with special reference to the isomegalen-and isomorphen-diagram. Forensic Sci Int 120:32–36

    Article  CAS  PubMed  Google Scholar 

  58. Grassberger M, Friedrich E, Reiter C (2003) The blowfly Chrysomya albiceps (Wiedemann) (Diptera: Calliphoridae) as a new forensic indicator in Central Europe. Int J Legal Med 117:75–81

    Article  PubMed  Google Scholar 

  59. Grassberger M, Reiter C (2002) Effect of temperature on development of the forensically important holarctic blow fly Protophormia terraenovae (Robineau-Desvoidy) (Diptera: Calliphoridae). Forensic Sci Int 128:177–182

    Article  PubMed  Google Scholar 

  60. Donovan SE, Hall M, Turner BD, Moncrieff CB (2006) Larval growth rates of the blowfly, Calliphora vicina, over a range of temperatures. Med Vet Entomol 20:106–114

    Article  CAS  PubMed  Google Scholar 

  61. Midgley JM, Villet MH (2009) Development of Thanatophilus micans (Fabricius 1794) (Coleoptera: Silphidae) at constant temperatures. Int J Legal Med 123:285–292

    Article  PubMed  Google Scholar 

  62. Wang YH, Li LL, Hu GW, Kang CT, Guo Y, Zhang YN, Wang Y, Wang JF (2022) Development of Necrobia ruficollis (Fabricius) (Coleoptera: Cleridae) under different constant temperatures. Insects 13:319

    Article  PubMed  PubMed Central  Google Scholar 

  63. Sukontason K, Piangjai S, Siriwattanarungsee S, Sukontason KL (2008) Morphology and developmental rate of blowflies Chrysomya megacephala and Chrysomya rufifacies in Thailand: application in forensic entomology. Parasitol Res 102:1207–1216

    Article  PubMed  Google Scholar 

  64. Sukontason K, Bunchu N, Chaiwong T, Moophayak K, Sukontason KL (2010) Forensically important flesh fly species in Thailand: morphology and developmental rate. Parasitol Res 106:1055–1064

    Article  PubMed  Google Scholar 

  65. Szpila K, Richet R, Pape T (2015) Third instar larvae of flesh flies (Diptera: Sarcophagidae) of forensic importance—critical review of characters and key for European species. Parasitol Res 114:2279–2289

    Article  PubMed  PubMed Central  Google Scholar 

  66. Carvalho CJBD, Mello-Patiu CAD (2008) Key to the adults of the most common forensic species of Diptera in South America. Rev Bras Entomol 52:390–406

    Article  Google Scholar 

  67. Velasquez Y, Magana C, Sanchez AM, Rojo S (2010) Diptera of forensic importance in the Iberian Peninsula: larval identification key. Med Vet Entomol 24:293–308

    CAS  PubMed  Google Scholar 

  68. Moura MO, Mello-Patiu CAD (2015) Comparative morphology and identification key for females of nine Sarcophagidae species (Diptera) with forensic importance in Southern Brazil. Rev Bras Entomol 59:177–187

    Article  Google Scholar 

  69. Rees C (1970) Age dependency of response in an insect chemoreceptor sensillum. Nature 227:740–742

    Article  CAS  PubMed  Google Scholar 

  70. Blaney WM, Schoonhoven LM, Simmonds M (1986) Sensitivity variations in insect chemoreceptors; a review. Experientia 42:13–19

    Article  CAS  Google Scholar 

  71. Otter CD, Tchicaya T, Schutte AM (1991) Effects of age, sex and hunger on the antennal olfactory sensitivity of tsetse flies. Physiol Entomol 16:173–182

    Article  Google Scholar 

  72. Rogoff WM, Beltz AD, Johnsen JO, Plapp FW (1964) A sex pheromone in the housefly, Musca domestica L. J Insect Physiol 10:239–246

    Article  CAS  Google Scholar 

  73. Kelling FJ, Biancaniello G, Den Otter CJ (2003) Effect of age and sex on the sensitivity of antennal and palpal olfactory cells of houseflies. Entomol Exp Appl 106:45–51

    Article  Google Scholar 

  74. Watts JE, Merritt GC, Goodrich BS (1981) The ovipositional response of the Australian sheep blowfly, Lucilia cuprina, to fleece-rot odors. Aust Vet J 57:450–454

    Article  CAS  PubMed  Google Scholar 

  75. Giao JZ, Godoy WAC (2007) Ovipositional behavior in predator and prey blowflies. J Insect Behav 20:77–86

    Article  Google Scholar 

  76. Lam K, Babor D, Duthie B, Babor E, Moore M, Gries G (2007) Proliferating bacterial symbionts on house fly eggs affect oviposition behaviour of adult flies. Anim Behav 74:81–92

    Article  Google Scholar 

  77. Amendt J, Zehner R, Reckel F (2008) The nocturnal oviposition behaviour of blowflies (Diptera: Calliphoridae) in Central Europe and its forensic implications. Forensic Sci Int 175:61–64

    Article  CAS  PubMed  Google Scholar 

  78. Voss SC, Spafford H, Dadour IR (2009) Annual and seasonal patterns of insect succession on decomposing remains at two locations in Western Australia. Forensic Sci Int 193:26–36

    Article  PubMed  Google Scholar 

  79. Statheropoulos M, Spiliopoulou C, Agapiou A (2005) A study of volatile organic compounds evolved from the decaying human body. Forensic Sci Int 153:147–155

    Article  CAS  PubMed  Google Scholar 

  80. Wells JD, Stevens JR (2008) Application of DNA-based methods in forensic entomology. Annu Rev Entomol 53:103–120

    Article  CAS  PubMed  Google Scholar 

  81. Hahn DA, Ragland GJ, Shoemaker DD, Denlinger DL (2009) Gene discovery using massively parallel pyrosequencing to develop ESTs for the flesh fly Sarcophaga crassipalpis. BMC Genomics 10:234–242

    Article  PubMed  PubMed Central  Google Scholar 

  82. AbB F, Gyllenstrand N (2002) Isolation and characterization of polymorphic microsatellite markers in the blowflies Lucilia illustris and Lucilia sericata. Mol Ecol Notes 2:113–116

    Article  Google Scholar 

  83. Picard CJ, Wells JD (2010) The population genetic structure of North American Lucilia sericata (Diptera: Calliphoridae), and the utility of genetic assignment methods for reconstruction of postmortem corpse relocation. Forensic Sci Int 195:63–67

    Article  CAS  PubMed  Google Scholar 

  84. Catts EP, Goff ML (1992) Forensic entomology in criminal investigations. Annu Rev Entomol 37:253–272

    Article  CAS  PubMed  Google Scholar 

  85. Hodecek J, Jakubec P (2022) Spatio-temporal distribution and habitat preference of necrophagous Calliphoridae based on 160 real cases from Switzerland. Int J Legal Med 136:923–934

    Article  PubMed  PubMed Central  Google Scholar 

  86. Lei G, Liu F, Liu P, Zhou Y, Jiao T, Dang YH (2018) A bibliometric analysis of forensic entomology trends and perspectives worldwide over the last two decades (1998-2017). Forensic Sci Int 295:72–82

    Article  PubMed  Google Scholar 

  87. Lefebvre F, Gaudry E (2009) Forensic entomology: a new hypothesis for the chronological succession pattern of necrophagous insect on human corpses. Ann Soc Entomol Fr 45:377–392

    Article  Google Scholar 

  88. Sanford MR (2017) Insects and associated arthropods analyzed during medicolegal death investigations in Harris County, Texas, USA: January 2013- April 2016. PLoS One 12:1–23

    Article  Google Scholar 

  89. Lutz L, Zehner R, Verhoff MA, Bratzke H, Amendt J (2021) It is all about the insects: a retrospective on 20 years of forensic entomology highlights the importance of insects in legal investigations. Int J Legal Med 135:2637–2651

    Article  PubMed  PubMed Central  Google Scholar 

  90. Dekeirsschieter J, Frederickx C, Verheggen FJ, Boxho P, Haubruge E (2013) Forensic entomology investigations from doctor marcel leclercq (1924–2008): a review of cases from 1969 to 2005. J Med Entomol 50:935–954

    Article  CAS  PubMed  Google Scholar 

  91. Henssge C, Madea B, Knight B, Nokes L, Krompecher T (1995) The estimation of the time since death in the early postmortem interval. Edward Arnold, London

    Google Scholar 

  92. Natale V, Di Milia L (2011) Season of birth and morningness: comparison between the northern and southern hemispheres. Chronobiol Int 28:727–730

    Article  PubMed  Google Scholar 

  93. Tarone AM, Foran DR (2008) Generalized additive models and Lucilia sericata growth: assessing confidence intervals and error rates in forensic entomology. J Forensic Sci 53:942–948

    Article  PubMed  Google Scholar 

  94. Goff ML (1991) Comparison of insect species associated with decomposing remains recovered inside dwellings and outdoors on the island of Oahu, Hawaii. J Forensic Sci 36:748–753

  95. Goff ML (1992) Problems in estimation of postmortem interval resulting from wrapping of the corpse: a case study from Hawaii. J Agric Entomol 9:237–243

    Google Scholar 

  96. Reibe S, Madea B (2010) How promptly do blowflies colonise fresh carcasses? A study comparing indoor with outdoor locations. Forensic Sci Int 195:52–57

    Article  CAS  PubMed  Google Scholar 

  97. Martín-Vega D, Nieto CM, Cifrián B, Baz A, Díaz-Aranda LM (2017) Early colonisation of urban indoor carcasses by blow flies (Diptera: Calliphoridae): an experimental study from central Spain. Forensic Sci Int 278:87–94

    Article  PubMed  Google Scholar 

  98. Bugelli V, Forni D, Bassi LA, Di Paolo M, Marra D, Lenzi S, Toni C, Giusiani M, Domenici R, Gherardi M (2015) Forensic entomology and the estimation of the minimum time since death in indoor cases. J Forensic Sci 60:525–531

    Article  PubMed  Google Scholar 

  99. Pohjoismäki JL, Karhunen PJ, Goebeler S, Saukko P, Sääksjärvi IE (2010) Indoors forensic entomology: colonization of human remains in closed environments by specific species of sarcosaprophagous flies. Forensic Sci Int 199:38–42

    Article  PubMed  Google Scholar 

  100. Anderson GS (2011) Comparison of decomposition rates and faunal colonization of carrion in indoor and outdoor environments. J Forensic Sci 56:136–142

    Article  PubMed  Google Scholar 

  101. Anderson GS (2005) Effects of arson on forensic entomology evidence. Can Soc Forensic Sci J 38:49–67

    Article  Google Scholar 

  102. Matuszewski S, Szafałowicz M, Grzywacz A (2014) Temperature-dependent appearance of forensically useful flies on carcasses. Int J Legal Med 128:1013–1020

    Article  PubMed  Google Scholar 

  103. Martínez-Sánchez A, Maga AC, Salo AM, Rojo S (2011) First record of Hermetia illucens (Diptera: Stratiomyidae) on human corpses in Iberian Peninsula. Forensic Sci Int 206:76–78

    Article  Google Scholar 

  104. Baz A, Botías C, Martín-Vega D, Cifrián B, Díaz-Aranda LM (2015) Preliminary data on carrion insects in urban (indoor and outdoor) and periurban environments in central Spain. Forensic Sci Int 248:41–47

    Article  PubMed  Google Scholar 

  105. Anderson GS (2000) Minimum and maximum development rates of some forensically important Calliphoridae (Diptera). J Forensic Sci 45:824–832

    Article  CAS  PubMed  Google Scholar 

  106. Brown K, Thorne A, Harvey M (2015) Calliphora vicina (Diptera: Calliphoridae) pupae: a timeline of external morphological development and a new age and PMI estimation tool. Int J Legal Med 129:835–850

    Article  PubMed  Google Scholar 

  107. Martín-Vega D, Simonsen TJ, Wicklein M, Hall MJ (2017) Age estimation during the blow fly intra-puparial period: a qualitative and quantitative approach using micro-computed tomography. Int J Legal Med 131:1429–1448

    Article  PubMed  PubMed Central  Google Scholar 

  108. Frere B, Suchaud F, Bernier G, Cottin F, Vincent B, Dourel L, Lelong A, Arpino P (2014) GC-MS analysis of cuticular lipids in recent and older scavenger insect puparia. An approach to estimate the postmortem interval (PMI). Anal Bioanal Chem 406:1081–1088

    Article  CAS  PubMed  Google Scholar 

  109. Amendt J, Richards CS, Campobasso CP, Zehner R, Hall MJ (2011) Forensic entomology: applications and limitations. Forensic Sci Med Pathol 7:379–392

    Article  CAS  PubMed  Google Scholar 

  110. Martínez Sánchez A, Rojo S, Marcos García MA (2000) Annual and spatial activity of dung flies and carrion in a Mediterranean holm-oak pasture ecosystem. Med Vet Entomol 14:56–63

    Article  PubMed  Google Scholar 

  111. Arnaldos MI, García MD, Romera E, Presa JJ, Luna A (2005) Estimation of postmortem interval in real cases based on experimentally obtained entomological evidence. Forensic Sci Int 149:57–65

    Article  CAS  PubMed  Google Scholar 

  112. Arnaldos M, López Gallego E, García M (2015) Datos preliminares sobre colonización temprana y actividad diaria de los principales dípteros sarcosaprófagos en el sureste peninsular. Ciencia Forense 12:153–174

    Google Scholar 

  113. Niederegger S, Pastuschek J, Mall G (2010) Preliminary studies of the influence of fluctuating temperatures on the development of various forensically relevant flies. Forensic Sci Int 199:72–78

    Article  PubMed  Google Scholar 

  114. Byrd JH, Castner JL (2010) Insects of forensic importance. In: Byrd JH, Castner JL (eds) Forensic entomology: the utility of arthropods in legal investigations, 2nd edn. CRC Press, Boca Raton, pp 39–126

    Google Scholar 

  115. Velásquez Y, Martínez-Sánchez A, Rojo S (2011) A preliminary analysis of early colonization of pig carcasses by blowflies (Diptera: Calliphoridae) in the Iberian Peninsula. Pest Technol 5:23–25

    Google Scholar 

  116. Dominguez-Martinez J, Gómez-Fernández L (1963) Momificación cadavérica particularmente rápida, operada bajo la acción de numerosas larvas de Chrysomya albiceps Wiedemann, 1819. Rev Iber Parasitol 23:43–62

    Google Scholar 

  117. Martin Vega D, Baz A (2013) Sarcosaprophagous Diptera assemblages in natural habitats in central Spain: spatial and seasonal changes in composition. Med Vet Entomol 27:64–76

    Article  CAS  PubMed  Google Scholar 

  118. Schroeder H, Klotzbach H, Oesterhelweg L, Püschel K (2002) Larder beetles (Coleoptera, Dermestidae) as an accelerating factor for decomposition of a human corpse. Forensic Sci Int 127:231–236

    Article  CAS  PubMed  Google Scholar 

  119. Frost CL, Braig HR, Amendt J, Perotti MA (2010) Indoor arthropods of forensic importance: insects associated with indoor decomposition and mites as indoor markers. In: Amendt J, Goff ML, Campobasso CP, Grassberger M (eds) Current concepts in forensic entomology. Springer, Netherlands, pp 93–108

    Google Scholar 

  120. Campobasso CP, Falamingo R, Grattagliano I, Vinci F (2009) The mummified corpse in a domestic setting. Am J Forensic Med Pathol 30:307–310

    Article  PubMed  Google Scholar 

  121. Lambkin TA, Khatoon N (1990) Culture methods for Necrobia rufipes (Degeer) and Dermestes maculatus Degeer (Coleoptera: Cleridae and Dermestidae). J Stored Prod Res 26:59–60

    Article  Google Scholar 

  122. Charabidze D, Vincent B, Pasquerault T, Hedouin V (2016) The biology and ecology of Necrodes littoralis, a species of forensic interest in Europe. Int J Legal Med 130:273–280

    Article  PubMed  Google Scholar 

  123. Hu GL, Wang M, Wang Y, Liao MQ, Hu JY, Zhang YN, Yu YM, Wang JF (2020) Estimation of post-mortem interval based on insect species present on a corpse found in a suitcase. Forensic Sci Int 306:110046

    Article  CAS  PubMed  Google Scholar 

  124. Vanin S, Gherardi M, Bugelli V, Di Paolo M (2011) Insects found on a human cadaver in central Italy including the blowfly Calliphora loewi (Diptera, Calliphoridae), a new species of forensic interest. Forensic Sci Int 207:e30–e33

    Article  CAS  PubMed  Google Scholar 

  125. Turchetto M, Lafisca S, Costantini G (2001) Postmortem interval (PMI) determined by study sarcophagous biocenoses: three cases from the province of Venice (Italy). Forensic Sci Int 120:28–31

    Article  CAS  PubMed  Google Scholar 

  126. Magni PA, Pérez-Bañón C, Borrini M, Dadour IR (2013) Syritta pipiens (Diptera: Syrphidae), a new species associated with human cadavers. Forensic Sci Int 231:e19–e23

    Article  PubMed  Google Scholar 

  127. Lord WD, Goff ML, Adkins TR, Haskell NH (1994) The black soldier fly Hermetia illucens (Diptera: Stratiomyidae) as a potential measure of human postmortem interval: observations and case histories. J Forensic Sci 39:215–222

    Article  CAS  PubMed  Google Scholar 

  128. Pujol Luz JR, Francez PADC, Ururahy Rodrigues A, Constantino R (2008) The black soldier-fly, Hermetia illucens (Díptera, Stratiomyidae), used to estimate the postmortem interval in a case in Amapá state, Brazil. J Forensic Sci 53:476–478

    Article  PubMed  Google Scholar 

  129. Sanford MR (2015) Forensic entomology of decomposing humans and their decomposing pets. Forensic Sci Int 247:e11–e17

    Article  PubMed  Google Scholar 

  130. Reibe S, Madea B (2010) Use of Megaselia scalaris (Diptera: Phoridae) for post-mortem interval estimation indoors. Parasitol Res 106:637–640

    Article  PubMed  Google Scholar 

  131. Wang Y, Liao MQ, Wang YH, Gong Q, Xu W, Wang M, Zhang YN, Wang JF (2021) Application of sarcosaprophagous insects to estimate the postmortem interval in 11 cases. Fa Yi Xue Za Zhi 37:332–337

    CAS  PubMed  Google Scholar 

  132. Arnaldos M, García M (2021) Entomological contributions to the legal system in southeastern Spain. Insects 12:429

    Article  PubMed  PubMed Central  Google Scholar 

  133. Guimarães SEF, Steindorff GS, de Lima BC, Farias RCAP, Vasconcelos SD (2022) Forensic entomology in research and practice: an overview of forensic experts’ perceptions and scientific output in Brazil. Int J Legal Med 136:1149–1161

    Article  PubMed  Google Scholar 

  134. Campobasso CP, Di Vella G, Introna F (2001) Factors affecting decomposition and Diptera colonization. Forensic Sci Int 120:18–27

    Article  CAS  PubMed  Google Scholar 

  135. Archer M (2014) Comparative analysis of insect succession data from Victoria (Australia) using summary statistics versus preceding mean ambient temperature models. J Forensic Sci 59:404–412

    Article  PubMed  Google Scholar 

  136. Voss SC, Cook DF, Dadour IR (2011) Decomposition and insect succession of clothed and unclothed carcasses in Western Australia. Forensic Sci Int 211:67–75

    Article  PubMed  Google Scholar 

  137. Lutz L, Verhoff MA, Amendt J (2019) Environmental factors influencing flight activity of forensically important female blow flies in Central Europe. Int J Legal Med 133:1267–1278

    Article  PubMed  Google Scholar 

  138. Archer MS, Jones SD, Wallman JF (2018) Delayed reception of live blowfly (Calliphora vicina and Chrysomya rufifacies) larval samples: implications for minimum postmortem interval estimates. Forensic Sci Res 3:27–39

  139. Hofer IM, Hart AJ, Martín-Vega D, Hall MJ (2020) Estimating crime scene temperatures from nearby meteorological station data. Forensic Sci Int 306:110028

    Article  PubMed  Google Scholar 

  140. Michalski M, Nadolski J (2018) Thermal conditions in selected urban and semi-natural habitats, important for the forensic entomology. Forensic Sci Int 287:153–162

    Article  PubMed  Google Scholar 

  141. Archer MS (2004) The effect of time after body discovery on the accuracy of retrospective weather station ambient temperature corrections in forensic entomology. J Forensic Sci 49:553–559

    Article  PubMed  Google Scholar 

  142. Dabbs GR (2010) Caution! All data are not created equal: The hazards of using National Weather Service data for calculating accumulated degree days. Forensic Sci Int 202:e49–e52

    Article  PubMed  Google Scholar 

  143. Dourel L, Pasquerault T, Gaudry E, Vincent B (2010) Using estimated on-site ambient temperature has uncertain benefit when estimating postmortem interval. Psyche J Entomol 2010:1–7

    Article  Google Scholar 

  144. Dabbs GR (2015) How should forensic anthropologists correct national weather service temperature data for use in estimating the postmortem interval? J Forensic Sci 60:581–587

    Article  PubMed  Google Scholar 

  145. Weatherbee CR, Pechal JL, Stamper T, Benbow ME (2017) Post-colonization interval estimates using multi-species Calliphoridae larval masses and spatially distinct temperature data sets: a case study. Insects 8:40

    Article  PubMed  PubMed Central  Google Scholar 

  146. Matuszewski S, Mądra-Bielewicz A (2019) Post-mortem interval estimation based on insect evidence in a quasi-indoor habitat. Sci Justice 59:109–115

    Article  PubMed  Google Scholar 

  147. Johnson AP, Wallman JF, Archer MS (2012) Experimental and casework validation of ambient temperature corrections in forensic entomology. J Forensic Sci 57:215–221

    Article  PubMed  Google Scholar 

  148. Hofer IM, Hart AJ, Martín-Vega D, Hall MJ (2017) Optimising crime scene temperature collection for forensic entomology casework. Forensic Sci Int 270:129–138

    Article  PubMed  Google Scholar 

  149. Lutz L, Amendt J (2020) Stay cool or get hot? An applied primer for using temperature in forensic entomological case work. Sci Justice 60:415–422

    Article  PubMed  Google Scholar 

  150. Gennard D (2007) Forensic entomology: an introduction, 1st edn. Wiley, New York

    Google Scholar 

  151. Scala JR, Wallace JR (2010) Forensic meteorology: the application of weather and climate. In Byrd JH Castner JL (eds.) Forensic entomology: the utility of arthropods in legal investigations, 2nd ed. CRC Press, Boca Raton, pp 519–538.

  152. Prasad MSS, Aneesh EM (2022) Tools and techniques in forensic entomology- a critical review. Int J Trop Insect Sc 42:2785–2794

    Article  Google Scholar 

  153. Wang Y, Wang YH, Wang M, Xu W, Zhang YN, Wang JF (2021) Forensic entomology in China and its challenges. Insects 12:230

    Article  PubMed  PubMed Central  Google Scholar 

  154. Campobasso CP, Introna F (2001) The forensic entomologist in the context of the forensic pathologist’s role. Forensic Sci Int 120:132–139

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are deeply saddened and miss the sudden death of Professor Jiangfeng Wang, and sincerely thank him for his recognition and valuable suggestions on the revision of this manuscript. This work was supported by the National Natural Science Foundation of China (grant numbers 82002007, 32270545, 32070508, and 31872258), the Priority Academic Program Development of Jiangsu Higher Education, and the Natural Science Foundation of Shandong Province, China (grant numbers ZR2020QH288).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Gengwang Hu and Yu Wang; Investigation, methodology, and software: Liangliang Li, Shipeng Shao, Yundi Gao, Ruonan Zhang, Yinghui Wang, Yanan Zhang, Yi Guo, Chengtao Kang; Writing—original draft preparation: Gengwang Hu, Yu Wang, Yingna Zhang, and Liangliang Li; writing—review and editing: Yu Wang and Jiangfeng Wang; supervision: Yu Wang and Jiangfeng Wang; funding acquisition: Yu Wang, Jiangfeng Wang, and Liangliang Li. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Yu Wang.

Ethics declarations

Informed consent

Informed consent was obtained from all individual participants (or their relations) included in the study.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, G., Li, L., Zhang, Y. et al. A global perspective of forensic entomology case reports from 1935 to 2022. Int J Legal Med 137, 1535–1553 (2023). https://doi.org/10.1007/s00414-023-03053-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-023-03053-7

Keywords

Navigation