Skip to main content
Log in

A novel set of short microhaplotypes based on non-binary SNPs for forensic challenging samples

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract 

Short tandem repeats (STRs) are the most widely used genetic markers in forensic application, but they are not ideal genetic markers for the analysis of forensic challenging samples such as highly degraded or unbalanced mixed samples because of their relatively large amplicons and stutter peaks. In this study, we developed a set of short microhaplotypes based on non-binary SNPs with molecular extent sizes no longer than 60 bases and genotyped 100 unrelated individuals from northern Han groups. Our results showed this panel has similar discrimination power to STR kits, as the combined random match probability (CMP) reached 1.396 × 10−22 and mean effective number of alleles (Ae) was 3.59. The cumulative probability of exclusion for duos (CPE-duos) was 0.999919 and the cumulative probability of exclusion for trios (CPE-trios) was 0.9999999987, suggesting this panel could be applied for forensic personal identification and parentage testing independently. Population differentiation in 26 populations from the 1000 Genomes Project indicated this panel could distinguish populations from Africa, East Asia, South Asia, America, and Europe. These microhaplotypes based on non-binary SNPs have short amplicons, good discrimination power, no stutter artifacts, and have great potential in detection of highly degraded and unbalanced mixtures for personal identification, paternity testing, and ancestry inference.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gorden EM, Sturk-Andreaggi K, Marshall C (2018) Repair of DNA damage caused by cytosine deamination in mitochondrial DNA of forensic case samples. Forensic Sci Int Genet 34:257–264. https://doi.org/10.1016/j.fsigen.2018.02.015

    Article  CAS  PubMed  Google Scholar 

  2. Holmes AS, Roman MG, Hughes-Stamm S (2018) In-field collection and preservation of decomposing human tissues to facilitate rapid purification and STR typing. Forensic Sci Int Genet 36:124–129. https://doi.org/10.1016/j.fsigen.2018.06.015

    Article  CAS  PubMed  Google Scholar 

  3. Tagliaro F, Pascali J, Fanigliulo A, Bortolotti F (2010) Recent advances in the application of CE to forensic sciences: a update over years 2007–2009. Electrophoresis 31(1):251–259. https://doi.org/10.1002/elps.200900482

    Article  CAS  PubMed  Google Scholar 

  4. Green RL, Lagace RE, Oldroyd NJ, Hennessy LK, Mulero JJ (2013) Developmental validation of the AmpFlSTR(R) NGM SElect PCR amplification kit: a next-generation STR multiplex with the SE33 locus. Forensic Sci Int Genet 7(1):41–51. https://doi.org/10.1016/j.fsigen.2012.05.012

    Article  CAS  PubMed  Google Scholar 

  5. Wojtas M, Piniewska D, Polańska N, Stawowiak A, Sanak M (2013) Mutations of microsatellite autosomal loci in paternity investigations of the Southern Poland population. Forensic Sci Int Genet 7(3):389–391. https://doi.org/10.1016/j.fsigen.2012.12.010

  6. Algee-Hewitt BF, Edge MD, Kim J, Li JZ, Rosenberg NA (2016) Individual identifiability predicts population identifiability in forensic microsatellite markers. Curr Biol 26(7):935–942. https://doi.org/10.1016/j.cub.2016.01.065

    Article  CAS  PubMed  Google Scholar 

  7. Kidd KK, Pakstis AJ, Speed WC, Lagace R, Chang J, Wootton S, Haigh E, Kidd JR (2014) Current sequencing technology makes microhaplotypes a powerful new type of genetic marker for forensics. Forensic Sci Int Genet 12:215–224. https://doi.org/10.1016/j.fsigen.2014.06.014

    Article  CAS  PubMed  Google Scholar 

  8. Gandotra N, Speed WC, Qin W, Tang Y, Pakstis AJ, Kidd KK, Scharfe C (2020) Validation of novel forensic DNA markers using multiplex microhaplotype sequencing. Forensic Sci Int Genet 47:102275. https://doi.org/10.1016/j.fsigen.2020.102275

    Article  CAS  PubMed  Google Scholar 

  9. Oldoni F, Bader D, Fantinato C, Wootton SC, Lagace R, Kidd KK, Podini D (2020) A sequence-based 74plex microhaplotype assay for analysis of forensic DNA mixtures. Forensic Sci Int Genet 49:102367. https://doi.org/10.1016/j.fsigen.2020.102367

    Article  CAS  PubMed  Google Scholar 

  10. van der Gaag KJ, de Leeuw RH, Laros JFJ, den Dunnen JT, de Knijff P (2018) Short hypervariable microhaplotypes: a novel set of very short high discriminating power loci without stutter artefacts. Forensic Sci Int Genet 35:169–175. https://doi.org/10.1016/j.fsigen.2018.05.008

    Article  CAS  PubMed  Google Scholar 

  11. Chen P, Yin C, Li Z, Pu Y, Yu Y, Zhao P, Chen D, Liang W, Zhang L, Chen F (2018) Evaluation of the microhaplotypes panel for DNA mixture analyses. Forensic Sci Int Genet 35:149–155. https://doi.org/10.1016/j.fsigen.2018.05.003

    Article  CAS  PubMed  Google Scholar 

  12. Kureshi A, Li J, Wen D, Sun S, Yang Z, Zha L (2020) Construction and forensic application of 20 highly polymorphic microhaplotypes. R Soc Open Sci 7(5):191937. https://doi.org/10.1098/rsos.191937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wen D, Sun S, Liu Y, Li J, Yang Z, Kureshi A, Fu Y, Li H, Jiang B, Jin C, Cai J, Zha L (2021) Considering the flanking region variants of nonbinary SNP and phenotype-informative SNP to constitute 30 microhaplotype loci for increasing the discriminative ability of forensic applications. Electrophoresis 42(9–10):1115–1126. https://doi.org/10.1002/elps.202000341

    Article  CAS  PubMed  Google Scholar 

  14. Genomes Project C, Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, Korbel JO, Marchini JL, McCarthy S, McVean GA, Abecasis GR (2015) A global reference for human genetic variation. Nature 526(7571):68–74. https://doi.org/10.1038/nature15393

    Article  CAS  Google Scholar 

  15. Zhao F, Wu X, Cai G, Xu, C (2003) The application of Mdified-Powerstates software in forensic biostatistics (In Chinese). Chinese Journal of Forensic Medicine 18:297–298

  16. Excoffier L, Lischer HE (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10(3):564–567. https://doi.org/10.1111/j.1755-0998.2010.02847.x

    Article  PubMed  Google Scholar 

  17. Kidd KK, Speed WC (2015) Criteria for selecting microhaplotypes: mixture detection and deconvolution. Investig Genet 6:1. https://doi.org/10.1186/s13323-014-0018-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Phillips C, Amigo J, Carracedo A, Lareu MV (2015) Tetra-allelic SNPs: Informative forensic markers compiled from public whole-genome sequence data. Forensic Sci Int Genet 19:100–106. https://doi.org/10.1016/j.fsigen.2015.06.011

    Article  CAS  PubMed  Google Scholar 

  19. Marshall TC, Slate J, Kruuk LE, Pemberton JM (1998) Statistical confidence for likelihood-based paternity inference in natural populations. Mol Ecol 7(5):639–655. https://doi.org/10.1046/j.1365-294x.1998.00374.x

    Article  CAS  PubMed  Google Scholar 

  20. Shi YY, He L (2005) SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci. Cell Res 15(2):97–98. https://doi.org/10.1038/sj.cr.7290272

    Article  CAS  PubMed  Google Scholar 

  21. Stephens M, Smith NJ, Donnelly P (2001) A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 68(4):978–989. https://doi.org/10.1086/319501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Stephens M, Scheet P (2005) Accounting for decay of linkage disequilibrium in haplotype inference and missing-data imputation. Am J Hum Genet 76(3):449–462. https://doi.org/10.1086/428594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rosenberg NA, Pritchard JK, Weber JL, Cann HM, Kidd KK, Zhivotovsky LA, Feldman MW (2002) Genetic structure of human populations. Science 298(5602):2381–2385. https://doi.org/10.1126/science.1078311

    Article  CAS  PubMed  Google Scholar 

  24. Takezaki N, Nei M, Tamura K (2010) POPTREE2: Software for constructing population trees from allele frequency data and computing other population statistics with Windows interface. Mol Biol Evol 27(4):747–752. https://doi.org/10.1093/molbev/msp312

    Article  CAS  PubMed  Google Scholar 

  25. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33(7):1870–1874. https://doi.org/10.1093/molbev/msw054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang DY, Chang CW, Lagace RE, Calandro LM, Hennessy LK (2012) Developmental validation of the AmpFlSTR(R) identifiler(R) plus PCR amplification kit: an established multiplex assay with improved performance. J Forensic Sci 57(2):453–465. https://doi.org/10.1111/j.1556-4029.2011.01963.x

    Article  CAS  PubMed  Google Scholar 

  27. Ludeman MJ, Zhong C, Mulero JJ, Lagace RE, Hennessy LK, Short ML, Wang DY (2018) Developmental validation of GlobalFiler PCR amplification kit: a 6-dye multiplex assay designed for amplification of casework samples. Int J Legal Med 132(6):1555–1573. https://doi.org/10.1007/s00414-018-1817-5

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kidd KK, Pakstis AJ, Speed WC, Lagace R, Wootton S, Chang J (2018) Selecting microhaplotypes optimized for different purposes. Electrophoresis 39(21):2815–2823. https://doi.org/10.1002/elps.201800092

    Article  CAS  PubMed  Google Scholar 

  29. Hanssen EN, Lyle R, Egeland T, Gill P (2017) Degradation in forensic trace DNA samples explored by massively parallel sequencing. Forensic Sci Int Genet 27:160–166. https://doi.org/10.1016/j.fsigen.2017.01.002

    Article  CAS  PubMed  Google Scholar 

  30. Brown H, Thompson R, Murphy G, Peters D, La Rue B, King J, Montgomery AH, Carroll M, Baus J, Sinha S, Wendt FR, Song B, Chakraborty R, Budowle B, Sinha SK (2017) Development and validation of a novel multiplexed DNA analysis system, InnoTyper((R)) 21. Forensic Sci Int Genet 29:80–99. https://doi.org/10.1016/j.fsigen.2017.03.017

    Article  CAS  PubMed  Google Scholar 

  31. Li J, Lin L, Jiang B, Wang C, Zeye MMJ, Wen D, He W, Qu W, Liu Y, Zha L (2021) An 18 multi-InDels panel for analysis of highly degraded forensic biological samples. Electrophoresis 42(9–10):1143–1152. https://doi.org/10.1002/elps.202000245

    Article  CAS  PubMed  Google Scholar 

  32. Kieser RE, Bus MM, King JL, van der Vliet W, Theelen J, Budowle B (2020) Reverse complement PCR: a novel one-step PCR system for typing highly degraded DNA for human identification. Forensic Sci Int Genet 44:102201. https://doi.org/10.1016/j.fsigen.2019.102201

    Article  CAS  PubMed  Google Scholar 

  33. Li J, Zha L (2021) Forensic characteristics and genetic structure of 18 autosomal STR loci in the Sierra Leone population. Int J Legal Med 135(2):455–456. https://doi.org/10.1007/s00414-020-02487-7

    Article  PubMed  Google Scholar 

  34. Bennett L, Oldoni F, Long K, Cisana S, Madella K, Wootton S, Chang J, Hasegawa R, Lagace R, Kidd KK, Podini D (2019) Mixture deconvolution by massively parallel sequencing of microhaplotypes. Int J Legal Med 133(3):719–729. https://doi.org/10.1007/s00414-019-02010-7

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank all volunteers who contributed samples to this study.

Funding

This project was supported by the National Key R&D Program of China (No. 2017YFC0803508) and China Postdoctoral Science Foundation (No. 2020M682591).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jienan Li or Zichun Hua.

Ethics declarations

Ethics approval

This study was performed according to Helsinki guidelines and approved by the Ethics Committee of the Third Xiangya Hospital of Central South University (Changsha, China) with the ethics approval code, 2018-S194.

Informed consent

All volunteers provided informed consent before inclusion in this study.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 92 KB)

Supplementary Fig. 1

Neighbor-joining (NJ) tree constructed based on genetic distance (Fst values) between the studied population and 26 populations (PNG 235 KB)

High Resolution Image (TIF 63 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Fan, Y., Zeye, M.M.J. et al. A novel set of short microhaplotypes based on non-binary SNPs for forensic challenging samples. Int J Legal Med 136, 43–53 (2022). https://doi.org/10.1007/s00414-021-02719-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-021-02719-4

Keywords

Navigation