Skip to main content

Advertisement

Log in

Advances in forensic diagnosis of electric shock death in the absence of typical electrical marks

  • Review
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

Electrical injury is a relatively uncommon but potentially devastating form of multi-system injury with high morbidity and mortality. In common electric injury cases, it is usually difficult to find characteristic changes of electric injury in major organs by using routine histopathological test methods unless there are landmark traces of electric injury, known as electric marks. How to determine electric shock death, especially in the absence of typical electrical marks on the body surface in some cases (which account for about two-thirds of electric injury cases), remains a challenging problem in forensic practice. Our summary shows that many current related studies have focused their efforts to find characteristic histopathological changes in major organs of the body caused by electric injury. Based on the results obtained through comparison of the literature, we find that it may be more urgent and important to find the optimal autopsy or sampling sites in cases with no typical electric marks, knowing that these sites may often reflect the most significant histopathological changes of electric injury, for instance anatomy and sampling of the anterior wrist and the medial malleolus in cases involving the hand-to-foot electric circuit pathway. In this article, we make a summary of advances in identification methods of electric injury, hoping that it could provide some new insights for further research in this field.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gentges J, Schieche C (2018) Electrical injuries in the emergency department: an evidence-based review. Emerg Med Pract 20:1–20

    PubMed  Google Scholar 

  2. McCann M, Hunting KL, Murawski J, Chowdhury R, Welch L (2003) Causes of electrical deaths and injuries among construction workers. Am J Ind Med 43:398–406. https://doi.org/10.1002/ajim.10198

    Article  PubMed  Google Scholar 

  3. Yamazaki M, Bai H, Tun Z, Ogura Y, Wakasugi C (1997) An electrocution death of an infant who had received an electric shock from an uncovered oval shaped lamp switch in his mouth while in a hospital. J Forensic Sci 42:151–154

    Article  CAS  Google Scholar 

  4. Rabban JT, Blair JA, Rosen CL, Adler JN, Sheridan RL (1997) Mechanisms of pediatric electrical injury. New implications for product safety and injury prevention. Arch Pediatr Adolesc Med 151:696–700. https://doi.org/10.1001/archpedi.1997.02170440058010

    Article  CAS  PubMed  Google Scholar 

  5. Shaha KK, Joe AE (2010) Electrocution-related mortality: a retrospective review of 118 deaths in Coimbatore, India, between January 2002 and December 2006. Med Sci Law 50:72–74. https://doi.org/10.1258/msl.2010.010008

    Article  PubMed  Google Scholar 

  6. Chan P, Duflou J (2008) Suicidal electrocution in Sydney: a 10-year case review. J Forensic Sci 53:455–459. https://doi.org/10.1111/j.1556-4029.2008.00667.x

    Article  PubMed  Google Scholar 

  7. Arnoldo BD, Purdue GF (2009) The diagnosis and management of electrical injuries. Hand Clin 25:469–479. https://doi.org/10.1016/j.hcl.2009.06.001

    Article  PubMed  Google Scholar 

  8. Spies C, Trohman RG (2006) Narrative review: electrocution and life-threatening electrical injuries. Ann Intern Med 145:531–537. https://doi.org/10.7326/0003-4819-145-7-200610030-00011

    Article  PubMed  Google Scholar 

  9. Sanford A, Gamelli RL (2014) Lightning and thermal injuries. Handb Clin Neurol 120:981–986. https://doi.org/10.1016/b978-0-7020-4087-0.00065-6

    Article  PubMed  Google Scholar 

  10. Koumbourlis AC (2002) Electrical injuries. Crit Care Med 30:S424-430. https://doi.org/10.1097/00003246-200211001-00007

    Article  PubMed  Google Scholar 

  11. Mansueto G, Di Napoli M, Mascolo P et al (2021) Electrocution stigmas in organ damage: the pathological marks. Diagnostics (Basel) 11:682. https://doi.org/10.3390/diagnostics11040682

    Article  Google Scholar 

  12. Lee RC, Zhang D, Hannig J (2000) Biophysical injury mechanisms in electrical shock trauma. Annu Rev Biomed Eng 2:477–509. https://doi.org/10.1146/annurev.bioeng.2.1.477

    Article  CAS  PubMed  Google Scholar 

  13. Kandeel S, Elhosary NM, El-Noor MMA, Balaha M (2017) Electric injury-induced Purkinje cell apoptosis in rat cerebellum: histological and immunohistochemical study. J Chem Neuroanat 81:87–96. https://doi.org/10.1016/j.jchemneu.2017.02.010

    Article  CAS  PubMed  Google Scholar 

  14. Marques EG, Junior GA, Neto BF et al (2014) Visceral injury in electrical shock trauma: proposed guideline for the management of abdominal electrocution and literature review. Int J Burns Trauma 4:1–6

    PubMed  PubMed Central  Google Scholar 

  15. Bielefeld L, Mierdel K, Pollak S, Perdekamp MG (2013) Electrothermic damage to the nail due to arcing in high-voltage discharge. Forensic Sci Int 233:149–153. https://doi.org/10.1016/j.forsciint.2013.09.008

    Article  PubMed  Google Scholar 

  16. Bellini E, Gambassi G, Nucci G et al (2016) Death by electrocution: histological technique for copper detection on the electric mark. Forensic Sci Int 264:24–27. https://doi.org/10.1016/j.forsciint.2016.03.013

    Article  CAS  PubMed  Google Scholar 

  17. Akyildiz E, Uzun I, Inanici MA, Baloglu H (2009) Computerized image analysis in differentiation of skin lesions caused by electrocution, flame burns, and abrasion. J Forensic Sci 54:1419–1422. https://doi.org/10.1111/j.1556-4029.2009.01155.x

    Article  PubMed  Google Scholar 

  18. Imamura T, Tokunaga H, Ise H, Jitsufuchi N, Kudo K (1997) Usefulness of elastica-van Gieson stain for the pathomorphological diagnosis of a cutaneous electric mark–a fatal electrocution case during arc welding. Fukuoka Igaku Zasshi 88:23–26

    CAS  PubMed  Google Scholar 

  19. Michiue T, Ishikawa T, Zhao D, Kamikodai Y, Zhu BL, Maeda H (2009) Pathological and biochemical analysis of the pathophysiology of fatal electrocution in five autopsy cases. Leg Med (Tokyo) 11 Suppl 1:S549-552. https://doi.org/10.1016/j.legalmed.2009.02.076

    Article  Google Scholar 

  20. Jayanth SH, Hugar BS, Chandra YP, Krishnan AG (2015) Fatal head injury: a sequelae to electric shock - a case report. Med Leg J 83:47–50. https://doi.org/10.1177/0025817214528235

    Article  CAS  PubMed  Google Scholar 

  21. Takamiya M, Saigusa K, Nakayashiki N, Aoki Y (2001) A histological study on the mechanism of epidermal nuclear elongation in electrical and burn injuries. Int J Legal Med 115:152–157. https://doi.org/10.1007/s004140100250

    Article  CAS  PubMed  Google Scholar 

  22. Karlsmark T, Thomsen HK, Danielsen L et al (1988) The morphogenesis of electrically and heat-induced dermal changes in pig skin. Forensic Sci Int 39:175–188. https://doi.org/10.1016/0379-0738(88)90089-8

    Article  CAS  PubMed  Google Scholar 

  23. Karlsmark T, Danielsen L, Thomsen HK et al (1988) Ultrastructural changes in dermal pig skin after exposure to heat and electric energy and acid and basic solutions. Forensic Sci Int 39:235–243. https://doi.org/10.1016/0379-0738(88)90126-0

    Article  CAS  PubMed  Google Scholar 

  24. Pfeiffer H, Du Chesne A, Brinkmann B (2006) An unusual case of homicidal near drowning followed by electrocution. Int J Legal Med 120:36–41. https://doi.org/10.1007/s00414-005-0049-7

    Article  CAS  PubMed  Google Scholar 

  25. Xu G, Su R, Lv J et al (2017) Anterior wrist and medial malleolus: the optimal sites for tissue selection in electric death through hand-to-foot circuit pathway. Int J Legal Med 131:433–439. https://doi.org/10.1007/s00414-016-1474-5

    Article  PubMed  Google Scholar 

  26. Fineschi V, Di Donato S, Mondillo S, Turillazzi E (2006) Electric shock: cardiac effects relative to non fatal injuries and post-mortem findings in fatal cases. Int J Cardiol 111:6–11. https://doi.org/10.1016/j.ijcard.2005.07.060

    Article  PubMed  Google Scholar 

  27. Aquila I, Gratteri S, Amirante C, Fineschi V, Frati P, Ricci P (2018) Electric or traumatic injury? The role of histopathological investigations. Med Leg J 86:85–88. https://doi.org/10.1177/0025817217743856

    Article  PubMed  Google Scholar 

  28. Zanoni S, Siefert JA, Darracq MA (2013) Atrial fibrillation with rapid ventricular response resulting from low-voltage electrical injury. J Emerg Med 45:e149-151. https://doi.org/10.1016/j.jemermed.2013.05.043

    Article  PubMed  Google Scholar 

  29. Liu S, Yu Y, Huang Q, Luo B, Liao X (2014) Electrocution-related mortality: a review of 71 deaths by low-voltage electrical current in Guangdong, China, 2001–2010. Am J Forensic Med Pathol 35:193–196. https://doi.org/10.1097/paf.0000000000000072

    Article  CAS  PubMed  Google Scholar 

  30. Navinan MR, Kandeepan T, Kulatunga A (2013) A case of paroxysmal atrial fibrillation following low voltage electrocution. BMC Res Notes 6:384. https://doi.org/10.1186/1756-0500-6-384

    Article  PubMed  PubMed Central  Google Scholar 

  31. Karger B, Suggeler O, Brinkmann B (2002) Electrocution–autopsy study with emphasis on “electrical petechiae.” Forensic Sci Int 126:210–213. https://doi.org/10.1016/s0379-0738(02)00061-0

    Article  CAS  PubMed  Google Scholar 

  32. Campbell CJ, Read DJ (1980) Circulatory and respiratory factors in the experimental production of lung petechiae and their possible significance in the sudden infant death syndrome. Pathology 12:181–188. https://doi.org/10.3109/00313028009060071

    Article  CAS  PubMed  Google Scholar 

  33. Sancesario G, Massa R, Petrillo S, Nottola SA, Correr S, Rossini PM (1989) Transcranial unifocal stimulation in rabbit: subcutaneous and meningeal changes. Eur Neurol 29:93–98. https://doi.org/10.1159/000116386

    Article  CAS  PubMed  Google Scholar 

  34. Kleinschmidt-DeMasters BK (1995) Neuropathology of lightning-strike injuries. Semin Neurol 15:323–328. https://doi.org/10.1055/s-2008-1041039

    Article  CAS  PubMed  Google Scholar 

  35. Myers GJ, Colgan MT, VanDyke DH (1977) Lightning-strike disaster among children. JAMA 238:1045–1046

    Article  CAS  Google Scholar 

  36. Brogdon BG, Lichtenstein JE (2000) Forensic radiology in historical perspective. Crit Rev Diagn Imaging 41:13–42

    Article  CAS  Google Scholar 

  37. Ampanozi G, Halbheer D, Ebert LC, Thali MJ, Held U (2020) Postmortem imaging findings and cause of death determination compared with autopsy: a systematic review of diagnostic test accuracy and meta-analysis. Int J Legal Med 134:321–337. https://doi.org/10.1007/s00414-019-02140-y

    Article  PubMed  Google Scholar 

  38. Cirielli V, Cima L, Bortolotti F et al (2018) Virtual autopsy as a screening test before traditional autopsy: the Verona experience on 25 cases. J Pathol Inform 9:28. https://doi.org/10.4103/jpi.jpi_23_18

    Article  PubMed  PubMed Central  Google Scholar 

  39. Thali MJ, Yen K, Schweitzer W et al (2003) Virtopsy, a new imaging horizon in forensic pathology: virtual autopsy by postmortem multislice computed tomography (MSCT) and magnetic resonance imaging (MRI)–a feasibility study. J Forensic Sci 48:386–403

    PubMed  Google Scholar 

  40. Wichmann D, Heinemann A, Weinberg C et al (2014) Virtual autopsy with multiphase postmortem computed tomographic angiography versus traditional medical autopsy to investigate unexpected deaths of hospitalized patients: a cohort study. Ann Intern Med 160:534–541. https://doi.org/10.7326/m13-2211

    Article  PubMed  Google Scholar 

  41. Jin X, Zhao JX, Yao Y et al (2020) Application of virtual anatomy technology in postmortem examination of medical dispute cases. Fa Yi Xue Za Zhi 36:72–76. https://doi.org/10.12116/j.issn.1004-5619.2020.01.015

    Article  CAS  PubMed  Google Scholar 

  42. Decker SJ, Braileanu M, Dey C et al (2019) Forensic radiology: a primer. Acad Radiol 26:820–830. https://doi.org/10.1016/j.acra.2019.03.006

    Article  PubMed  Google Scholar 

  43. Baumeister R, Mauf S, Laberke P, Krupp A, Thali MJ, Flach PM (2015) A fatal case of electrocution with unique forensic radiological postmortem findings. Forensic Sci Med Pathol 11:589–595. https://doi.org/10.1007/s12024-015-9716-2

    Article  CAS  PubMed  Google Scholar 

  44. Xenopoulos N, Movahed A, Hudson P, Reeves WC (1991) Myocardial injury in electrocution. Am Heart J 122:1481–1484. https://doi.org/10.1016/0002-8703(91)90599-d

    Article  CAS  PubMed  Google Scholar 

  45. Homma S, Gillam LD, Weyman AE (1990) Echocardiographic observations in survivors of acute electrical injury. Chest 97:103–105. https://doi.org/10.1378/chest.97.1.103

    Article  CAS  PubMed  Google Scholar 

  46. James TN, Riddick L, Embry JH (1990) Cardiac abnormalities demonstrated postmortem in four cases of accidental electrocution and their potential significance relative to nonfatal electrical injuries of the heart. Am Heart J 120:143–157. https://doi.org/10.1016/0002-8703(90)90171-s

    Article  CAS  PubMed  Google Scholar 

  47. Fineschi V, Karch SB, D’Errico S, Pomara C, Riezzo I, Turillazzi E (2006) Cardiac pathology in death from electrocution. Int J Legal Med 120:79–82. https://doi.org/10.1007/s00414-005-0011-8

    Article  PubMed  Google Scholar 

  48. Gentile G, Andreola S, Bailo P et al (2019) A pilot study on the diagnosis of fatal electrocution by the detection of myocardial microhemorrhages. J Forensic Sci 65:840–845. https://doi.org/10.1111/1556-4029.14255

    Article  CAS  PubMed  Google Scholar 

  49. Cherington M, Yarnell PR, London SF (1995) Neurologic complications of lightning injuries. West J Med 162:413–417

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Andrews CJ, Reisner AD (2017) Neurological and neuropsychological consequences of electrical and lightning shock: review and theories of causation. Neural Regen Res 12:677–686. https://doi.org/10.4103/1673-5374.206636

    Article  PubMed  PubMed Central  Google Scholar 

  51. Erkin G, Akinbingöl M, Uysal H, Keles I, Aybay C, Ozel S (2007) Delayed cervical spinal cord injury after high voltage electrical injury: a case report. J Burn Care Res 28:905–908. https://doi.org/10.1097/BCR.0b013e318159a3a1

    Article  PubMed  Google Scholar 

  52. Lakshminarayanan S, Chokroverty S, Eshkar N, Grewal R (2009) The spinal cord in lightning injury: a report of two cases. J Neurol Sci 276:199–201. https://doi.org/10.1016/j.jns.2008.09.020

    Article  PubMed  Google Scholar 

  53. Kurtulus A, Acar K, Adiguzel E, Boz B (2009) Hippocampal neuron loss due to electric injury in rats: a stereological study. Leg Med (Tokyo) 11:59–63. https://doi.org/10.1016/j.legalmed.2008.08.001

    Article  Google Scholar 

  54. Torre C, Varetto L (1985) The ultrastructure of the electric burn in man: a transmission electron microscopy-scanning electron microscopy study. J Forensic Sci 30:448–455

    CAS  PubMed  Google Scholar 

  55. Wang Y, Yang L, Cheng W et al (2009) Scanning electron microscopic observation of erythrocytes and endothelial cells of electrified death rabbits. Leg Med (Tokyo) 11 Suppl 1:S244-247. https://doi.org/10.1016/j.legalmed.2009.01.097

    Article  Google Scholar 

  56. Wang Y, Liu M, Cheng WB, Li F, Liao Z, Wang Y (2008) Endothelial cell membrane perforation of aorta and pulmonary artery in the electrocution victims. Forensic Sci Int 178:204–206. https://doi.org/10.1016/j.forsciint.2008.04.003

    Article  PubMed  Google Scholar 

  57. De Donno A, Favia M, Marzullo A, Mele F, Introna F (2019) High tension electrocution death: new histopathological cardiac tools by Confocal Laser Scanning Microscope. J Forensic Leg Med 66:162–166. https://doi.org/10.1016/j.jflm.2019.07.005

    Article  PubMed  Google Scholar 

  58. Wang T, Zou D, Zhang J, Chen Y (2016) Application of microbeam X-ray fluorescence spectrometry in the diagnosis of suspected electrocution by high-voltage direct current: a case report. Am J Forensic Med Pathol 37:190–193. https://doi.org/10.1097/PAF.0000000000000238

    Article  CAS  PubMed  Google Scholar 

  59. Shetty BSK, Kanchan T, Acharya J, Naik R (2014) Cardiac pathology in fatal electrocution. Burns 40:e45–e46. https://doi.org/10.1016/j.burns.2014.02.001

    Article  PubMed  Google Scholar 

  60. Visona SD, Chen Y, Bernardi P, Andrello L, Osculati A (2018) Diagnosis of electrocution: the application of scanning electron microscope and energy-dispersive X-ray spectroscopy in five cases. Forensic Sci Int 284:107–116. https://doi.org/10.1016/j.forsciint.2018.01.001

    Article  CAS  PubMed  Google Scholar 

  61. Debono R (1999) A histological analysis of a high voltage electric current injury to an upper limb. Burns 25:541–547. https://doi.org/10.1016/s0305-4179(99)00029-7

    Article  CAS  PubMed  Google Scholar 

  62. Mondello C, Micali A, Cardia L, Argo A, Zerbo S, Spagnolo EV (2018) Forensic tools for the diagnosis of electrocution death: case study and literature review. Med Leg J 86:89–93. https://doi.org/10.1177/0025817217749503

    Article  PubMed  Google Scholar 

  63. Ateriya N, Meshram VP, Kanchan T, Saraf A, Shekhawat RS, Malik S (2020) Metallization at the exit wound-an unusual finding in fatal electrocution. J Forensic Sci 65:318–322. https://doi.org/10.1111/1556-4029.14163

    Article  PubMed  Google Scholar 

  64. Marcinkowski T, Pankowski M (1980) Significance of skin metallization in the diagnosis of electrocution. Forensic Sci Int 16:1–6. https://doi.org/10.1016/0379-0738(80)90173-5

    Article  CAS  PubMed  Google Scholar 

  65. Jacobsen H (1997) Electrically induced deposition of metal on the human skin. Forensic Sci Int 90:85–92. https://doi.org/10.1016/s0379-0738(97)00151-5

    Article  CAS  PubMed  Google Scholar 

  66. Jakubeniene M, Zakaras A, Minkuviene ZN, Benoshys A (2006) Application of atomic absorption spectroscopy for detection of multimetal traces in low-voltage electrical marks. Forensic Sci Int 161:36–40. https://doi.org/10.1016/j.forsciint.2005.10.019

    Article  CAS  PubMed  Google Scholar 

  67. Acar K, Boz B, Kurtulus A, Divrikli U, Elci L (2004) Using of atomic absorption spectrometry for diagnosis of electrical injuries (an experimental rat study). Forensic Sci Int 146 Suppl:S3-4. https://doi.org/10.1016/j.forsciint.2004.09.007

    Article  CAS  PubMed  Google Scholar 

  68. Tanaka N, Kinoshita H, Jamal M, Kumihashi M, Tsutsui K, Ameno K (2013) Findings for current marks: histopathological examination and energy-dispersive X-ray spectroscopy of three cases. Leg Med (Tokyo) 15:283–287. https://doi.org/10.1016/j.legalmed.2013.06.004

    Article  CAS  Google Scholar 

  69. Kinoshita H, Nishiguchi M, Ouchi H et al (2004) The application of a variable-pressure scanning electron microscope with energy dispersive X-ray microanalyser to the diagnosis of electrocution: a case report. Leg Med (Tokyo) 6:55–60. https://doi.org/10.1016/j.legalmed.2003.08.006

    Article  CAS  Google Scholar 

  70. Liu D, Wang H, Li SX et al (2010) Study on electrical current mark with environmental scanning electron microscopy and energy dispersive X-ray microanalyser. Fa Yi Xue Za Zhi 26:421–424

    PubMed  Google Scholar 

  71. Boracchi M, Crudele GDL, Gentile G et al (2019) Extensive study on electrocution at the Bureau of Legal Medicine of Milan (1993–2017): determination of the current mark with scanning electron microscope/energy-dispersive X-ray analysis on paraffin-embedded samples. Med Leg J 87:67–73. https://doi.org/10.1177/0025817219833328

    Article  PubMed  Google Scholar 

  72. Sabine Becker J (2013) Imaging of metals in biological tissue by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS): state of the art and future developments. J Mass Spectrom 48:255–268. https://doi.org/10.1002/jms.3168

    Article  CAS  PubMed  Google Scholar 

  73. Lauer E, Villa M, Jotterand M et al (2017) Imaging mass spectrometry of elements in forensic cases by LA-ICP-MS. Int J Legal Med 131:497–500. https://doi.org/10.1007/s00414-016-1414-4

    Article  PubMed  Google Scholar 

  74. Huang QY, Chen YC, Liu SP (2012) Connexin 43, angiotensin II, endothelin 1, and type III collagen alterations in heart of rats having undergone fatal electrocution. Am J Forensic Med Pathol 33:215–221. https://doi.org/10.1097/PAF.0b013e31823f04eb

    Article  CAS  PubMed  Google Scholar 

  75. Wang Y, Yang J, Wang SC, Peng QY, Liao ZG, Liu M (2006) A study on expression of caspase-8 in organs of rats after electrical injury at antemortem or postmortem. Sichuan Da Xue Xue Bao Yi Xue Ban 37:230–233

    CAS  PubMed  Google Scholar 

  76. Ghandour NM, Refaiy AE, Omran GA (2014) Cardiac histopathological and immunohistochemical changes due to electric injury in rats. J Forensic Leg Med 23:44–48. https://doi.org/10.1016/j.jflm.2014.01.007

    Article  PubMed  Google Scholar 

  77. Zhang B, Yang Y, Tian Y et al (1998) Diagnostic value of serum creatine kinase MB in patients with cardiac damage after electric injuries. Zhonghua Wai Ke Za Zhi 36:480–483

    CAS  PubMed  Google Scholar 

  78. Jia-ke C, Li-gen L, Quan-wen G et al (2009) Establishment of soft-tissue-injury model of high-voltage electrical burn and observation of its pathological changes. Burns 35:1158–1164. https://doi.org/10.1016/j.burns.2009.02.010

    Article  PubMed  Google Scholar 

  79. Chen JH, Inamori-Kawamoto O, Michiue T, Ikeda S, Ishikawa T, Maeda H (2015) Cardiac biomarkers in blood, and pericardial and cerebrospinal fluids of forensic autopsy cases: a reassessment with special regard to postmortem interval. Leg Med (Tokyo) 17:343–350. https://doi.org/10.1016/j.legalmed.2015.03.007

    Article  CAS  Google Scholar 

  80. Liu H, Wang Q, Zhao Z, Xie Y, Ding S, Wang Z (2016) The clinical and medicolegal analysis of electrical shocked rats: based on the serological and histological methods. Biomed Res Int 2016:4896319. https://doi.org/10.1155/2016/4896319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Dumache R, Ciocan V, Muresan C, Rogobete AF, Enache A (2015) Circulating microRNAs as promising biomarkers in forensic body fluids identification. Clin Lab 61:1129–1135. https://doi.org/10.7754/clin.lab.2015.150207

    Article  CAS  PubMed  Google Scholar 

  82. Wang Y, Liu M, Cheng WB, He GQ, Li F, Liao ZG (2008) The expressions of HSP 70 mRNA and c-fos mRNA in the skeletal muscle and cardiac muscle of rabbits by electrocuted. Fa Yi Xue Za Zhi 24:245–247 251

    CAS  PubMed  Google Scholar 

  83. Ami D, Natalello A, Doglia SM (2012) Fourier transform infrared microspectroscopy of complex biological systems: from intact cells to whole organisms. Methods Mol Biol 895:85–100. https://doi.org/10.1007/978-1-61779-927-3_7

    Article  CAS  PubMed  Google Scholar 

  84. Sahu RK, Argov S, Bernshtain E et al (2004) Detection of abnormal proliferation in histologically ‘normal’ colonic biopsies using FTIR-microspectroscopy. Scand J Gastroenterol 39:557–566. https://doi.org/10.1080/00365520410004695

    Article  CAS  PubMed  Google Scholar 

  85. Dong HW, Li W, Li SY et al (2018) Infrared spectral characteristics of electrical injuries on swine skin caused by different voltages based on machine learning algorithms. Fa Yi Xue Za Zhi 34:619–624. https://doi.org/10.12116/j.issn.1004-5619.2018.06.009

    Article  CAS  PubMed  Google Scholar 

  86. Li SY, Zou DH, Luo YW et al (2014) Characteristics of electrically injured skin from human hand tissue samples using Fourier transform infrared microspectroscopy. Sci Justice 54:98–104. https://doi.org/10.1016/j.scijus.2013.07.005

    Article  PubMed  Google Scholar 

  87. Zhang J, Lin W, Lin H, Wang Z, Dong H (2017) Identification of skin electrical injury using infrared imaging: a possible complementary tool for histological examination. PLoS One 12:e0170844. https://doi.org/10.1371/journal.pone.0170844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Xu X, Xu H, Zhu J, Deng P (1995) A preliminary study of skin electrical injury with computerized image analysis. Forensic Sci Int 73:197–202. https://doi.org/10.1016/0379-0738(95)01752-5

    Article  CAS  PubMed  Google Scholar 

  89. Xu G, Su R, Lv J et al (2017) Anterior wrist and medial malleolus as the novel sites of tissue selection: a retrospective study on electric shock death through the hand-to-foot circuit pathway. Int J Legal Med 131:677–683. https://doi.org/10.1007/s00414-016-1527-9

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors greatly appreciate the editors and two anonymous peer reviewers for their critical reading and insightful comments, which are helpful to improve our manuscript substantially.

Funding

This work was supported by the Opening Project of Key Laboratory of Evidence-Identification in Universities of Shandong, Shandong University of Political Science and Law, China (2018KFKT2 to Xu G) and the Major Transverse Research Projects of Jiaxing University, China (00619006 to Xu G).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangtao Xu.

Ethics declarations

Ethics approval

Not acquired (review article). This manuscript does not contain any individual data.

Conflict of interest

The authors declare no competing interests.

Permissions of figure reuse

We have obtained permissions for both the print and online format for reusing Figs. 1, 2, and 3 in this work from the copyright owner(s).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, X., Chen, D., Li, X. et al. Advances in forensic diagnosis of electric shock death in the absence of typical electrical marks. Int J Legal Med 135, 2469–2478 (2021). https://doi.org/10.1007/s00414-021-02658-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-021-02658-0

Keywords

Navigation