Skip to main content

Fourier Transform Infrared Microspectroscopy of Complex Biological Systems: From Intact Cells to Whole Organisms

  • Protocol
  • First Online:
Intrinsically Disordered Protein Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 895))

Abstract

Fourier transform infrared (FTIR) microspectroscopy is a powerful tool for the study of complex biological systems. Indeed, it is employed to characterize intact cells, tissues, and whole model organisms such as nematodes, since it allows to obtain a chemical fingerprint of the sample under investigation, giving information on the molecular composition and structures. The successful application of this technique for the in situ study of biological processes requires specific sample preparations, in order to obtain reliable and reproducible results. In the present work, we illustrate the optimized procedures to prepare biological samples for IR measurements and the method to collect and analyze their FTIR spectra. In particular, we describe here the investigations on bacterial cells, intact eukaryotic cells, and whole intact nematode specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Orsini F, Ami D, Villa AM, Sala G, Bellotti MG, Doglia SM (2000) FT-IR microspectroscopy for microbiological studies. J Microbiol Methods 42:17–27

    Article  PubMed  CAS  Google Scholar 

  2. Shaw RA, Mantsch HH (1999) Vibrational biospectroscopy: from plants to animals to humans. A historical perspective. J Mol Struct 480–481:1–13

    Article  Google Scholar 

  3. Heraud P, Tobin MJ (2009) The emergence of biospectroscopy in stem cell research. Stem Cell Res 3:12–14

    Article  PubMed  Google Scholar 

  4. Wood BR, Chernenko T, Matthäus C, Diem M, Chong C, Bernhard U et al (2008) Shedding new light on the molecular architecture of oocytes using a combination of synchrotron Fourier transform-infrared and Raman spectroscopic mapping. Anal Chem 80:9065–9072

    Article  PubMed  CAS  Google Scholar 

  5. Ami D, Neri T, Natalello A, Mereghetti P, Doglia SM, Zanoni M et al (2008) Embryonic stem cell differentiation studied by FTIR spectroscopy. Biochim Biophys Acta 1783:98–106

    Article  PubMed  CAS  Google Scholar 

  6. Walsh MJ, Hammiche A, Fellous TG, Nicholson JM, Cotte M, Susini J et al (2009) Tracking the cell hierarchy in the human intestine using biochemical signatures derived by mid-infrared microspectroscopy. Stem Cell Res 3:15–27

    Article  PubMed  CAS  Google Scholar 

  7. Kretlow A, Wang Q, Kneipp J, Lasch P, Beekes M, Miller L et al (2006) FTIR-microspectroscopy of prion-infected nervous tissue. Biochim Biophys Acta 1758:948–959

    Article  PubMed  CAS  Google Scholar 

  8. Ami D, Natalello A, Zullini A, Doglia SM (2004) Fourier transform infrared microspectroscopy as a new tool for nematode studies. FEBS Lett 576:297–300

    Article  PubMed  CAS  Google Scholar 

  9. Diomede L, Cassata G, Fiordaliso F, Salio M, Ami D, Natalello A et al (2010) Tetracycline and its analogues protect Caenorhabditis elegans from β amyloid-induced toxicity by targeting oligomers. Neurobiol Dis 40:424–431

    Article  PubMed  CAS  Google Scholar 

  10. Doglia SM, Ami D, Natalello A, Gatti-Lafranconi P, Lotti M (2008) Fourier transform infrared spectroscopy analysis of the conformational quality of recombinant proteins within inclusion bodies. Biotechnol J 3:193–201

    Article  PubMed  CAS  Google Scholar 

  11. Kneipp J, Miller LM, Joncic M, Kittel M, Lasch P, Beekes M et al (2003) In situ identification of protein structural changes in prion-infected tissue. Biochim Biophys Acta 1639:152–158

    Article  PubMed  CAS  Google Scholar 

  12. Choo LP, Wetzel DL, Halliday WC, Jackson M, LeVine SM, Mantsch HH (1996) In situ characterization of beta-amyloid in Alzheimer’s diseased tissue by synchrotron Fourier transform infrared microspectroscopy. Biophys J 71:1672–1679

    Article  PubMed  CAS  Google Scholar 

  13. Tanthanuch W, Thumanu K, Lorthongpanich C, Parnpai R, Heraud P (2010) Neural differentiation of mouse embryonic stem cells studied by FTIR spectroscopy. J Mol Struct 967:189–195

    Article  CAS  Google Scholar 

  14. Kelly JG, Singh MN, Stringfellow HF, Walsh MJ, Nicholson JM, Bahrami F et al (2009) Derivation of a subtype-specific biochemical signature of endometrial carcinoma using synchrotron-based Fourier-transform infrared microspectroscopy. Cancer Lett 274:208–217

    Article  PubMed  CAS  Google Scholar 

  15. Schultz CP, Liu KZ, Johnston JB, Mantsch HH (1997) Prognosis of chronic lymphocytic leukemia from infrared spectra of lymphocytes. J Mol Struct 408:253–256

    Article  Google Scholar 

  16. Chiti F, Dobson CM (2006) Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem 75:333–366

    Article  PubMed  CAS  Google Scholar 

  17. Alberts B (2010) Model organisms and human health. Science 330:1724

    Article  PubMed  CAS  Google Scholar 

  18. Markaki M, Tavernarakis N (2010) Modelling human diseases in Caenorhabditis elegans. Biotechnol J 5:1261–1276

    Article  PubMed  CAS  Google Scholar 

  19. Moloney A, Sattelle DB, Lomas DA, Crowther DC (2010) Alzheimer’s disease: insights from Drosophila melanogaster models. Trends Biochem Sci 35:228–235

    Article  PubMed  CAS  Google Scholar 

  20. Link CD (1995) Expression of human beta-amyloid peptide in transgenic Caenorhabditis elegans. Proc Natl Acad Sci USA 92:9368–9372

    Article  PubMed  CAS  Google Scholar 

  21. Singh SM, Panda AK (2005) Solubilization and refolding of bacterial inclusion body proteins. J Biosci Bioeng 99:303–310

    Article  PubMed  CAS  Google Scholar 

  22. de Groot NS, Sabate R, Ventura S (2009) Amyloids in bacterial inclusion bodies. Trends Biochem Sci 34:408–416

    Article  PubMed  Google Scholar 

  23. Dasari M, Espargaro A, Sabate R, Lopez Del Amo JM, Fink U, Grelle G et al (2011) Bacterial inclusion bodies of Alzheimer’s disease β-amyloid peptides can be employed to study native-like aggregation intermediate states. Chembiochem 12:407–423

    Article  PubMed  CAS  Google Scholar 

  24. Arrondo JLR, Goni FM (1999) Structure and dynamics of membrane proteins as studied by infrared spectroscopy. Prog Biophys Mol Biol 72:367–405

    Article  PubMed  CAS  Google Scholar 

  25. Haris PI, Severcan F (1999) FTIR spectroscopic characterization of protein structure in aqueous and non-aqueous media. J Mol Catal B: Enzym 7:207–221

    Article  CAS  Google Scholar 

  26. Barth A, Zscherp C (2002) What vibrations tell us about proteins. Q Rev Biophys 35:369–430

    Article  PubMed  CAS  Google Scholar 

  27. Ami D, Bonecchi L, Calì S, Orsini G, Tonon G, Doglia SM (2003) FTIR study of heterologous protein expression in recombinant Escherichia coli strains. Biochim Biophys Acta 1624:6–10

    Article  PubMed  CAS  Google Scholar 

  28. Ami D, Natalello A, Gatti-Lafranconi P, Lotti M, Doglia SM (2005) Kinetics of inclusion body formation studied in intact cells by FT-IR spectroscopy. FEBS Lett 579:3433–3436

    Article  PubMed  CAS  Google Scholar 

  29. Heraud P, Ng E, Sally Caine S, Yu Q, Hirst C, Mayberry R et al (2010) Fourier transform infrared microspectroscopy identifies early lineage commitment in differentiating human embryonic stem cells. Stem Cell Res 4:140–147

    Article  PubMed  CAS  Google Scholar 

  30. Chan JW, Lieu DK (2009) Label-free biochemical characterization of stem cells using vibrational spectroscopy. J Biophotonics 2:656–668

    Article  PubMed  CAS  Google Scholar 

  31. Ami D, Natalello A, Taylor G, Tonon G, Doglia SM (2006) Structural analysis of protein inclusion bodies by Fourier transform infrared microspectroscopy. Biochim Biophys Acta 1764:793–799

    Article  PubMed  CAS  Google Scholar 

  32. Natalello A, Ami D, Doglia SM (2007) Protein aggregation studied in intact cells by Fourier transform infrared spectroscopy. In: Uversky VN, Permyakov EA (eds) Methods in protein structure and stability analysis: vibrational spectroscopy. Nova Science Publ Inc, Hauppage, NY

    Google Scholar 

  33. Ami D, Natalello A, Mereghetti P, Neri T, Zanoni M, Monti M et al (2010) FT-IR spectroscopy supported by PCA-LDA analysis for the study of embryonic stem cell differentiation. Spectroscopy 24:89–97

    Article  CAS  Google Scholar 

  34. Notingher I, Bisson I, Polak JM, Hench LL (2004) In situ spectroscopic study of nucleic acids in differentiating embryonic stem cells. Vibr Sprectros 35:199–203

    Article  CAS  Google Scholar 

  35. Notingher I, Bisson I, Bishop AE, Randle WL, Polak JM, Hench LL (2004) In situ spectral monitoring of mRNA translation in embryonic stem cells during differentiation in vitro. Anal Chem 76:3185–3193

    Article  PubMed  CAS  Google Scholar 

  36. Rencher AC (2002) Methods of multivariate analysis. Wiley, Hoboken, NJ

    Book  Google Scholar 

  37. Ami D, Mereghetti P, Natalello A, Doglia SM (2011) Fourier transform infrared microspectroscopy as a tool for embryonic stem cell studies. In: Atwood C (ed) Methodological Advances in the Culture, Manipulation and Utilization of Embryonic Stem Cells for Basic and Practical Applications. InTech, Rijeka, Croatia

    Google Scholar 

  38. Manly BFJ (2004) Multivariate statistical methods. Chapman & Hall/CRC, London, UK

    Google Scholar 

  39. Fearn T (2002) Discriminant analysis. In: Chalmers JM, Griffiths PR (eds) Handbook of vibrational spectroscopy. Wiley, New York

    Google Scholar 

  40. Konorov SO, Schulze HG, Caron NJ, Piret JM, Blades MW, Turner RFB (2011) Raman microspectroscopic evidence that dry-fixing preserves the temporal pattern of non-specific differentiation in live human embryonic stem cells. J Raman spectros 42:576–579

    Google Scholar 

  41. Dong A, Huang P, Caughey WS (1990) Protein secondary structures in water from second-derivative amide I infrared spectra. Biochemistry 29:3303–3308

    Article  PubMed  CAS  Google Scholar 

  42. Susi H, Byler DM (1986) Resolution-enhanced fourier-transform infrared-spectroscopy of enzymes. Methods Enzymol 130:290–311

    Article  PubMed  CAS  Google Scholar 

  43. Bassan P, Kohler A, Martens H, Lee J, Byrne HJ, Dumas P et al (2010) Resonant Mie Scattering (RMieS) correction of infrared spectra from highly scattering biological samples. Analyst 135:268–277

    Article  PubMed  CAS  Google Scholar 

  44. Casal HL, Mantsch HH (1984) Polymorphic phase behaviour of phospholipid membranes studied by infrared spectroscopy. Biochim Biophys Acta 779:381–401

    Article  PubMed  CAS  Google Scholar 

  45. Kacurakova M, Wilson RH (2001) Developments in mid-infrared FT-IR spectroscopy of selected carbohydrates. Carbohydr Polym 44:291–303

    Article  CAS  Google Scholar 

  46. Wang TD, Triadafilopoulos G, Crawford JM, Dixon LR, Bhandari T, Sahbaie P et al (2007) Detection of endogenous biomolecules in Barrett’s esophagus by Fourier transform infrared spectroscopy. Proc Natl Acad Sci USA 104:15864–15869

    Article  PubMed  CAS  Google Scholar 

  47. Steller W, Einenkel J, Horn LC, Braumann UD, Binder H, Salzer R et al (2006) Delimitation of squamous cell cervical carcinoma using infrared microspectroscopic imaging. Anal Bioanal Chem 384:145–154

    Article  PubMed  CAS  Google Scholar 

  48. Banyay M, Sarkar M, Graslund A (2003) A library of IR bands of nucleic acids in solution. Biophys Chem 104:477–488

    Article  PubMed  CAS  Google Scholar 

  49. Zhizhina GP, Oleinik EF (1972) Infrared spectroscopy of nucleic acids. Russ Chem Rev 41:258–280

    Article  Google Scholar 

  50. Tsuboi M (1961) Infrared spectra and secondary structure of deoxyribonucleic acid. Progr Theor Phys Suppl 17:99–107

    Article  Google Scholar 

  51. Banyay M, Graslund A (2002) Structural effects of cytosine methylation on DNA sugar pucker studied by FTIR. J Mol Biol 324:667–676

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

D.A. and A.N. acknowledge a postdoctoral fellowship, and S.M.D. acknowledges the financial support of the FAR (Fondo di Ateneo per la Ricerca) of the University of Milano-Bicocca (I).

We wish to thank Prof. Aldo Zullini (Department of Biotechnology and Biosciences, University of Milano Bicocca), Dr Diomede and Dr Salmona (Mario Negri Institute, Milan), and Prof. Carlo Alberto Redi (Department of Animal Biology, University of Pavia) for collaborations and fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diletta Ami .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Ami, D., Natalello, A., Doglia, S.M. (2012). Fourier Transform Infrared Microspectroscopy of Complex Biological Systems: From Intact Cells to Whole Organisms. In: Uversky, V., Dunker, A. (eds) Intrinsically Disordered Protein Analysis. Methods in Molecular Biology, vol 895. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-927-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-927-3_7

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-926-6

  • Online ISBN: 978-1-61779-927-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics