Skip to main content

Advertisement

Log in

The diversity of shedder tests and a novel factor that affects DNA transfer

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

A Correction to this article was published on 03 June 2022

This article has been updated

Abstract

Since the first shedder test was formulated almost 20 years ago, a plethora of different test strategies has emerged. The amount of data generated so far is considerable. However, because of the limited reproducibility of its results, the reliability of the shedder concept is frequently questioned. This study provides a literature overview of applied shedder tests that capture the diversity of the concept. It is pointed out to what extent different classification criteria, workflows, and trace evaluation can impair the classification outcome. The robustness of shedder status was assessed by applying a promising approach established by Fonneløp et al. (Forensic Sci Int Genet 29:48–60, 21). Data provide similar results to those in recent studies but also ambiguous shedder classifications. The applied shedder test was adapted based on our own as well as the reviewed data. With novel classification parameters, promising results were achieved. This study reveals uncertainties and inconsistencies of the shedder concept. Recommendations for harmonization and transparency are proposed. Implementation of the recommendations may result in an increased impact on casework and transfer studies, including activity-level assessments. Furthermore, this study shows that moisturizers affect participants’ shedder status as well as DNA transfer. The impact appears to remain relevant even 60 min post ointment application but depends greatly on the type of moisturizer applied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, upon reasonable request.

Code availability

Not applicable.

Change history

References

  1. Lowe A, Murray C, Whitaker J, Tully G, Gill P (2002) The propensity of individuals to deposit DNA and secondary transfer of low level DNA from individuals to inert surfaces. Forensic Sci Int 129:25–34. https://doi.org/10.1016/S0379-0738(02)00207-4

    Article  CAS  PubMed  Google Scholar 

  2. Quinones I, Daniel B (2012) Cell free DNA as a component of forensic evidence recovered from touched surfaces. Forensic Sci Int Genet 6:26–30. https://doi.org/10.1016/j.fsigen.2011.01.004

    Article  CAS  PubMed  Google Scholar 

  3. Manoli P, Antoniou A, Bashiardes E, Xenophontos S, Photiades M, Stribley V, Mylona M, Demetriou C, Cariolou MA (2016) Sex-specific age association with primary DNA transfer. Int J Legal Med 130:103–112. https://doi.org/10.1007/s00414-015-1291-2

    Article  PubMed  Google Scholar 

  4. Vandewoestyne M, Van Hoofstat D, Franssen A et al (2013) Presence and potential of cell free DNA in different types of forensic samples. Forensic Sci Int Genet 7:316–320. https://doi.org/10.1016/j.fsigen.2012.12.005

    Article  CAS  PubMed  Google Scholar 

  5. Zoppis S, Muciaccia B, D’Alessio A, Ziparo E, Vecchiotti C, Filippini A (2014) DNA fingerprinting secondary transfer from different skin areas: morphological and genetic studies. Forensic Sci Int Genet 11:137–143. https://doi.org/10.1016/j.fsigen.2014.03.005

    Article  CAS  PubMed  Google Scholar 

  6. Warshauer DH, Marshall P, Kelley S, King J, Budowle B (2012) An evaluation of the transfer of saliva-derived DNA. Int J Legal Med 126:851–861. https://doi.org/10.1007/s00414-012-0743-1

    Article  PubMed  Google Scholar 

  7. Phipps M, Petricevic S (2007) The tendency of individuals to transfer DNA to handled items. Forensic Sci Int 168:162–168. https://doi.org/10.1016/j.forsciint.2006.07.010

    Article  CAS  PubMed  Google Scholar 

  8. Kita T, Yamaguchi H, Yokoyama M, Tanaka T, Tanaka N (2008) Morphological study of fragmented DNA on touched objects. Forensic Sci Int Genet 3:32–36. https://doi.org/10.1016/j.fsigen.2008.09.002

    Article  CAS  PubMed  Google Scholar 

  9. Wang C, Stanciu CE, Ehrhardt CJ, Yadavalli VK (2017) Nanoscale characterization of forensically relevant epithelial cells and surface associated extracellular DNA. Forensic Sci Int 277:252–258

    Article  CAS  Google Scholar 

  10. Lacerenza D, Aneli S, Omedei M, Gino S, Pasino S, Berchialla P, Robino C (2016) A molecular exploration of human DNA/RNA co-extracted from the palmar surface of the hands and fingers. Forensic Sci Int Genet 22:44–53. https://doi.org/10.1016/j.fsigen.2016.01.012

    Article  CAS  PubMed  Google Scholar 

  11. Burrill J, Daniel B, Frascione N (2019) A review of trace “Touch DNA” deposits: variability factors and an exploration of cellular composition. Forensic Sci Int Genet 39:8–18. https://doi.org/10.1016/j.fsigen.2018.11.019

    Article  CAS  PubMed  Google Scholar 

  12. Goray M, Fowler S, Szkuta B, Van Oorschot RAH (2016) Shedder status - an analysis of self and non-self DNA in multiple handprints deposited by the same individuals over time. Forensic Sci Int Genet 23:190–196. https://doi.org/10.1016/j.fsigen.2016.05.005

    Article  CAS  PubMed  Google Scholar 

  13. Allen R, Pogemiller J, Joslin J et al (2008) Identification through typing of DNA recovered from touch transfer evidence: parameters affecting yield of recovered human DNA. J Forensic Identif 58:33–41

    Google Scholar 

  14. Kamphausen T, Schadendorf D, Von Wurmb-Schwark N et al (2012) Good shedder or bad shedder- the influence of skin diseases on forensic DNA analysis from epithelial abrasions. Int J Legal Med 126:179–183. https://doi.org/10.1007/s00414-011-0579-0

    Article  PubMed  Google Scholar 

  15. Oleiwi AA, Morris MR, Schmerer WM, Sutton R (2015) The relative DNA-shedding propensity of the palm and finger surfaces. Sci Justice 55:329–334. https://doi.org/10.1016/j.scijus.2015.04.003

    Article  CAS  PubMed  Google Scholar 

  16. Rolo M, Sampaio L, Balsa F, Bento AM, Gouveia N, Serra A, Brito P, Lopes V, São-Bento M, Bogas V, Cunha P, Porto MJ, Carneiro de Sousa MJ (2019) Assessment of individual shedder status and background DNA on objects: direct or indirect transfer? Forensic Sci Int Genet Suppl Ser 7:622–623. https://doi.org/10.1016/j.fsigss.2019.10.114

    Article  Google Scholar 

  17. Szkuta B, Ballantyne KN, van Oorschot RAH (2017) Transfer and persistence of DNA on the hands and the influence of activities performed. Forensic Sci Int Genet 28:10–20. https://doi.org/10.1016/j.fsigen.2017.01.006

    Article  CAS  PubMed  Google Scholar 

  18. Kanokwongnuwut P, Kirkbride KP, Linacre A (2019) Detection of cellular material in lip-prints. Forensic Sci Med Pathol 15:362–368. https://doi.org/10.1007/s12024-019-00108-3

    Article  PubMed  Google Scholar 

  19. Kanokwongnuwut P, Martin B, Kirkbride KP, Linacre A (2018) Shedding light on shedders. Forensic Sci Int Genet 36:20–25. https://doi.org/10.1016/j.fsigen.2018.06.004

    Article  CAS  PubMed  Google Scholar 

  20. Otten L, Banken S, Schürenkamp M, Schulze-Johann K, Sibbing U, Pfeiffer H, Vennemann M (2019) Secondary DNA transfer by working gloves. Forensic Sci Int Genet 43:102126. https://doi.org/10.1016/j.fsigen.2019.07.005

    Article  CAS  PubMed  Google Scholar 

  21. Fonneløp AE, Ramse M, Egeland T, Gill P (2017) The implications of shedder status and background DNA on direct and secondary transfer in an attack scenario. Forensic Sci Int Genet 29:48–60. https://doi.org/10.1016/j.fsigen.2017.03.019

    Article  CAS  PubMed  Google Scholar 

  22. Graham EAM, Bowyer VL, Martin VJ, Rutty GN (2007) Investigation into the usefulness of DNA profiling of earprints. Sci Justice 47:155–159. https://doi.org/10.1016/j.scijus.2007.09.006

    Article  CAS  PubMed  Google Scholar 

  23. Graham EAM, Rutty GN (2008) Investigation into “normal” background DNA on adult necks: implications for DNA profiling of manual strangulation victims. J Forensic Sci 53:1074–1082. https://doi.org/10.1111/j.1556-4029.2008.00800.x

    Article  PubMed  Google Scholar 

  24. Djuric M, Varljen T, Stanojevic A, Stojkovic O (2008) DNA typing from handled items. Forensic Sci Int Genet Suppl Ser 1:411–412. https://doi.org/10.1016/j.fsigss.2007.10.161

    Article  Google Scholar 

  25. Poetsch M, Bajanowski T, Kamphausen T (2013) Influence of an individual’s age on the amount and interpretability of DNA left on touched items. Int J Legal Med 127:1093–1096. https://doi.org/10.1007/s00414-013-0916-6

    Article  PubMed  Google Scholar 

  26. Tan J, Lee JY, Lee LYC, Aw ZQ, Chew MH, Ishak NIB, Lee YS, Mugni MA, Syn CKC (2019) Shedder status: does it really exist? Forensic Sci Int Genet Suppl Ser 7:360–362. https://doi.org/10.1016/j.fsigss.2019.10.012

    Article  Google Scholar 

  27. Daly DJ, Murphy C, McDermott SD (2012) The transfer of touch DNA from hands to glass, fabric and wood. Forensic Sci Int Genet 6:41–46. https://doi.org/10.1016/j.fsigen.2010.12.016

    Article  CAS  PubMed  Google Scholar 

  28. Farmen RK, Jaghø R, Cortez P, Frøyland ES (2008) Assessment of individual shedder status and implication for secondary DNA transfer. Forensic Sci Int Genet Suppl Ser 1:415–417. https://doi.org/10.1016/j.fsigss.2007.08.015

    Article  Google Scholar 

  29. Alessandrini F, Cecati M, Pesaresi M, Turchi C, Carle F, Tagliabracci A (2003) Fingerprints as evidence for a genetic profile: morphological study on fingerprints and analysis of exogenous and individual factors affecting DNA typing. J Forensic Sci 48:586–592. https://doi.org/10.1520/JFS2002260

    Article  CAS  PubMed  Google Scholar 

  30. Rutty GN, Hopwood A, Tucker V (2003) The effectiveness of protective clothing in the reduction of potential DNA contamination of the scene of crime. Int J Legal Med 117:170–174. https://doi.org/10.1007/s00414-002-0348-1

    Article  CAS  PubMed  Google Scholar 

  31. Fonneløp AE, Egeland T, Gill P (2015) Secondary and subsequent DNA transfer during criminal investigation. Forensic Sci Int Genet 17:155–162. https://doi.org/10.1016/j.fsigen.2015.05.009

    Article  CAS  PubMed  Google Scholar 

  32. Samie L, Hicks T, Castella V, Taroni F (2016) Stabbing simulations and DNA transfer. Forensic Sci Int Genet 22:73–80. https://doi.org/10.1016/j.fsigen.2016.02.001

    Article  CAS  PubMed  Google Scholar 

  33. Dierig L, Schwender M, Wiegand P (2020) Looking for the pinpoint: optimizing identification, recovery and DNA extraction of micro traces in forensic casework. Forensic Sci Int Genet 44:1–9. https://doi.org/10.1016/j.fsigen.2019.102191

    Article  CAS  Google Scholar 

  34. van Oorschot RAH, Szkuta B, Meakin GE, Kokshoorn B, Goray M (2019) DNA transfer in forensic science: a review. Forensic Sci Int Genet 38:140–166. https://doi.org/10.1016/j.fsigen.2018.10.014

    Article  CAS  PubMed  Google Scholar 

  35. Gosch A, Courts C (2019) On DNA transfer: the lack and difficulty of systematic research and how to do it better. Forensic Sci Int Genet 40:24–36. https://doi.org/10.1016/j.fsigen.2019.01.012

    Article  CAS  PubMed  Google Scholar 

  36. Rawlings AV, Scott IR, Harding CR, Bowser PA (1994) Stratum corneum moisturization at the molecular level. J Invest Dermatol 103:731–740. https://doi.org/10.1111/1523-1747.ep12398620

    Article  CAS  PubMed  Google Scholar 

  37. Pouillot A, Dayan N, Polla AS et al (2008) Back to basics the stratum corneum : a double paradox. J Cosmet Dermatol 1:143–148

    Article  Google Scholar 

  38. Del Rosso JQ, Levin J (2011) The clinical relevance of maintaining the functional integrity of the stratum corneum in both healthy and disease-affected skin. J Clin Aesthet Dermatol 4:22–42

    PubMed  PubMed Central  Google Scholar 

  39. Sahle FF, Gebre-Mariam T, Dobner B, Wohlrab J, Neubert RHH (2015) Skin diseases associated with the depletion of stratum corneum lipids and stratum corneum lipid substitution therapy. Skin Pharmacol Physiol 28:42–55. https://doi.org/10.1159/000360009

    Article  CAS  PubMed  Google Scholar 

  40. Zeichner JA, Del Rosso JQ (2016) Multivesicular emulsion ceramide-containing moisturizers: an evaluation of their role in the management of common skin disorders. J Clin Aesthet Dermatol 9:26–32

    PubMed  PubMed Central  Google Scholar 

  41. Denda M, Sato J, Tsuchiya T, Elias PM, Feingold KR (1998) Low humidity stimulates epidermal DNA synthesis and amplifies the hyperproliferative response to barrier disruption: implication for seasonal exacerbations of inflammatory dermatoses. J Invest Dermatol 111:873–878. https://doi.org/10.1046/j.1523-1747.1998.00364.x

    Article  CAS  PubMed  Google Scholar 

  42. Elias PM (1983) Epidermal lipids, barrier function, and desquamation. J Invest Dermatol 80:S44–S49. https://doi.org/10.1038/JID.1983.12

    Article  Google Scholar 

  43. Blank IH (1952) Factors which influence the water content of the stratum corneum. J Invest Dermatol 18:433–440. https://doi.org/10.1038/JID.1952.52

    Article  CAS  PubMed  Google Scholar 

  44. Rawlings AV, Matts PJ (2005) Stratum corneum moisturization at the molecular level: an update in relation to the dry skin cycle. J Invest Dermatol 124:1099–1110. https://doi.org/10.1111/j.1523-1747.2005.23726.x

    Article  CAS  PubMed  Google Scholar 

  45. Menon GK, Cleary GW, Lane ME (2012) The structure and function of the stratum corneum. Int J Pharm 435:3–9. https://doi.org/10.1016/j.ijpharm.2012.06.005

    Article  CAS  PubMed  Google Scholar 

  46. Honari G, Maibach HI (2014) Applied dermatotoxicology. Elsevier Inc.

  47. Biniek K, Kaczvinsky J, Matts P, Dauskardt RH (2015) Understanding age-induced alterations to the biomechanical barrier function of human stratum corneum. J Dermatol Sci 80:94–101. https://doi.org/10.1016/j.jdermsci.2015.07.016

    Article  PubMed  Google Scholar 

  48. Khan BA, Akhtar N, Khan HMS et al (2011) Basics of pharmaceutical emulsions: a review. Afr J Pharm Pharmacol 5:2715–2725. https://doi.org/10.5897/AJPP11.698

    Article  CAS  Google Scholar 

  49. Lu GW, Gao P (2010) CHAPTER 3 - emulsions and microemulsions fortopical and transdermal drug delivery - kulkarni. In: Vitthal S (ed) Handbook of non-invasive drug delivery systems. William Andrew Publishing, Boston, pp 59–94

    Chapter  Google Scholar 

  50. Finlay AY, Edwards PH, Harding KG (1989) “Fingertip unit” in dermatology. Lancet 2:155

    Article  CAS  Google Scholar 

  51. Long CC, Finlay AY (1991) The finger-tip unit--a new practical measure. Clin Exp Dermatol 16:444–447. https://doi.org/10.1111/j.1365-2230.1991.tb01232.x

    Article  CAS  PubMed  Google Scholar 

  52. Savary J, Ortonne JP, Aractingi S (2005) The right dose in the right place: an overview of current prescription, instruction and application modalities for topical psoriasis treatments. J Eur Acad Dermatol Venereol 19(Suppl 3):14–17. https://doi.org/10.1111/j.1468-3083.2005.01333.x

    Article  PubMed  Google Scholar 

  53. Bleka Ø, Storvik G, Gill P (2016) EuroForMix: an open source software based on a continuous model to evaluate STR DNA profiles from a mixture of contributors with artefacts. Forensic Sci Int Genet 21:35–44. https://doi.org/10.1016/j.fsigen.2015.11.008

    Article  CAS  PubMed  Google Scholar 

  54. Samie L, Taroni F, Champod C (2020) Estimating the quantity of transferred DNA in primary and secondary transfers. Sci Justice 60:128–135. https://doi.org/10.1016/j.scijus.2019.09.008

    Article  PubMed  Google Scholar 

  55. Kokshoorn B, Aarts LHJ, Ansell R, Connolly E, Drotz W, Kloosterman AD, McKenna LG, Szkuta B, van Oorschot RAH (2018) Sharing data on DNA transfer, persistence, prevalence and recovery: arguments for harmonization and standardization. Forensic Sci Int Genet 37:260–269. https://doi.org/10.1016/j.fsigen.2018.09.006

    Article  CAS  PubMed  Google Scholar 

  56. Boer M, Duchnik E, Maleszka R, Marchlewicz M (2016) Structural and biophysical characteristics of human skin in maintaining proper epidermal barrier function. Postep Dermatologii i Alergol 33:1–5. https://doi.org/10.5114/pdia.2015.48037

    Article  Google Scholar 

  57. Darlenski R, Fluhr JW (2012) Influence of skin type, race, sex, and anatomic location on epidermal barrier function. Clin Dermatol 30:269–273. https://doi.org/10.1016/j.clindermatol.2011.08.013

    Article  PubMed  Google Scholar 

  58. Muizzuddin N, Hellemans L, Van Overloop L et al (2010) Structural and functional differences in barrier properties of African American, Caucasian and East Asian skin. J Dermatol Sci 59:123–128. https://doi.org/10.1016/j.jdermsci.2010.06.003

    Article  CAS  PubMed  Google Scholar 

  59. Rogers J, Harding C, Mayo A, Banks J, Rawlings A (1996) Stratum corneum lipids: the effect of ageing and the seasons. Arch Dermatol Res 288:765–770. https://doi.org/10.1007/BF02505294

    Article  CAS  PubMed  Google Scholar 

  60. Bouwstra JA, Ponec M (2006) The skin barrier in healthy and diseased state. Biochim Biophys Acta 1758:2080–2095. https://doi.org/10.1016/j.bbamem.2006.06.021

    Article  CAS  PubMed  Google Scholar 

  61. van Smeden J, Bouwstra JA (2016) Stratum corneum lipids: their role for the skin barrier function in healthy subjects and atopic dermatitis patients. Curr Probl Dermatol 49:8–26. https://doi.org/10.1159/000441540

    Article  PubMed  Google Scholar 

  62. Engebretsen KA, Johansen JD, Kezic S, Linneberg A, Thyssen JP (2016) The effect of environmental humidity and temperature on skin barrier function and dermatitis. J Eur Acad Dermatol Venereol 30:223–249. https://doi.org/10.1111/jdv.13301

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank the volunteers who participated in this study and the entire team of the forensic DNA department for support in conducting the tests and evaluating the results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Max Schwender.

Ethics declarations

Ethics approval

The study was carried out with the written consent of all participants and under approval of the Ethics Committee of Ulm University.

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Consent for publication

Informed consent was obtained from all individual participants included in the study.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: Due to a marriage, the author Max Schmidt should be changed to Max Schwender.

Supplementary Information

ESM 1

(XLSX 23 kb)

ESM 2

(DOCX 13 kb)

ESM 3

(DOCX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schwender, M., Bamberg, M., Dierig, L. et al. The diversity of shedder tests and a novel factor that affects DNA transfer. Int J Legal Med 135, 1267–1280 (2021). https://doi.org/10.1007/s00414-021-02533-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-021-02533-y

Keywords

Navigation