Skip to main content

Advertisement

Log in

Sex-specific age association with primary DNA transfer

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

Practicing forensic scientists who are called to provide expert witness testimony are often asked to explain both the presence and the absence of DNA on objects that have been handled by perpetrators with bare hands. Unwashed hands, depending on what they have come in contact with previously, may become the vehicle of both primary and secondary transfer of DNA. In this study, we investigated the propensity of primary and secondary transfer of DNA from unwashed bare hands of 128 individuals onto plastic tubes. Our experiments, carried out in triplicate, have shown that DNA was not detected on all the touched tubes, secondary transfer of DNA, through unwashed hands, was small, and in the majority of cases primary DNA transfer could be distinguished from secondary DNA transfer. A statistically significant association was demonstrated between percent DNA profile deposited on plastic tubes, through unwashed hands, and the age of male individuals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lowe A, Murray C, Whitaker J, Tully G, Gill P (2002) The propensity of individuals to deposit DNA and secondary transfer of low level DNA from individuals to inert surfaces. Forensic Sci Int 129(1):25–34

    Article  CAS  Google Scholar 

  2. Phipps M, Petricevic S (2007) The tendency of individuals to transfer DNA to handled items. Forensic Sci Int 168(2–3):162–168. doi:10.1016/j.forsciint.2006.07.010

    Article  CAS  Google Scholar 

  3. Kamphausen T, Schadendorf D, von Wurmb-Schwark N, Bajanowski T, Poetsch M (2012) Good shedder or bad shedder—the influence of skin diseases on forensic DNA analysis from epithelial abrasions. Int J Legal Med 126(1):179–183. doi:10.1007/s00414-011-0579-0

    Article  Google Scholar 

  4. Goray M, Eken E, Mitchell RJ, van Oorschot RA (2010) Secondary DNA transfer of biological substances under varying test conditions. Forensic Sci Int Genet 4(2):62–67. doi:10.1016/j.fsigen.2009.05.001

    Article  CAS  Google Scholar 

  5. Goray M, Mitchell RJ, van Oorschot RA (2010) Investigation of secondary DNA transfer of skin cells under controlled test conditions. Leg Med (Tokyo) 12(3):117–120. doi:10.1016/j.legalmed.2010.01.003

    Article  CAS  Google Scholar 

  6. Wiegand P, Heimbold C, Klein R, Immel U, Stiller D, Klintschar M (2011) Transfer of biological stains from different surfaces. Int J Legal Med 125(5):727–731. doi:10.1007/s00414-010-0424-x

    Article  Google Scholar 

  7. Daly DJ, Murphy C, McDermott SD (2012) The transfer of touch DNA from hands to glass, fabric and wood. Forensic Sci Int Genet 6(1):41–46. doi:10.1016/j.fsigen.2010.12.016

    Article  CAS  Google Scholar 

  8. Goray M, Mitchell JR, van Oorschot RA (2012) Evaluation of multiple transfer of DNA using mock case scenarios. Leg Med (Tokyo) 14(1):40–46. doi:10.1016/j.legalmed.2011.09.006

    Article  CAS  Google Scholar 

  9. Verdon TJ, Mitchell RJ, van Oorschot RA (2013) The influence of substrate on DNA transfer and extraction efficiency. Forensic Sci Int Genet 7(1):167–175. doi:10.1016/j.fsigen.2012.09.004

    Article  CAS  Google Scholar 

  10. Fonnelop AE, Egeland T, Gill P (2015) Secondary and subsequent DNA transfer during criminal investigation. Forensic Sci Int Genet 17:155–162. doi:10.1016/j.fsigen.2015.05.009

    Article  Google Scholar 

  11. Szkuta B, Harvey ML, Ballantyne KN, van Oorschot RA (2015) DNA transfer by examination tools—a risk for forensic casework? Forensic Sci Int Genet 16:246–254. doi:10.1016/j.fsigen.2015.02.004

    Article  CAS  Google Scholar 

  12. Warshauer DH, Marshall P, Kelley S, King J, Budowle B (2012) An evaluation of the transfer of saliva-derived DNA. Int J Legal Med 126(6):851–861. doi:10.1007/s00414-012-0743-1

    Article  Google Scholar 

  13. Goray M, van Oorschot RA (2015) The complexities of DNA transfer during a social setting. Leg Med (Tokyo) 17(2):82–91. doi:10.1016/j.legalmed.2014.10.003

    Article  CAS  Google Scholar 

  14. van Oorschot RA, McArdle R, Goodwin WH, Ballantyne KN (2014) DNA transfer: the role of temperature and drying time. Leg Med (Tokyo) 16(3):161–163. doi:10.1016/j.legalmed.2014.01.005

    Article  Google Scholar 

  15. Poetsch M, Bajanowski T, Kamphausen T (2013) Influence of an individual’s age on the amount and interpretability of DNA left on touched items. Int J Legal Med 127(6):1093–1096. doi:10.1007/s00414-013-0916-6

    Article  Google Scholar 

  16. Xenophontos S, Christofi V, Iosif G, Polycarpou P, Manoli P, Demetriou N, Cariolou MA (2015) Internal validation of the QIAamp DNA Investigator Kit, QIAamp 96 DNA Swab BioRobot Kit and the BioRobot Universal System for DNA extraction from reference and crime scene samples. Forensic Sci Int Genet 14:e8–10. doi:10.1016/j.fsigen.2014.10.020

    Article  CAS  Google Scholar 

  17. Swango KL, Hudlow WR, Timken MD, Buoncristiani MR (2007) Developmental validation of a multiplex qPCR assay for assessing the quantity and quality of nuclear DNA in forensic samples. Forensic Sci Int 170(1):35–45. doi:10.1016/j.forsciint.2006.09.002

    Article  CAS  Google Scholar 

  18. Cupples CM, Champagne JR, Lewis KE, Cruz TD (2009) STR profiles from DNA samples with “undetected” or low quantifiler results. J Forensic Sci 54(1):103–107. doi:10.1111/j.1556-4029.2008.00914.x

    Article  CAS  Google Scholar 

  19. Ambers A, Turnbough M, Benjamin R, King J, Budowle B (2014) Assessment of the role of DNA repair in damaged forensic samples. Int J Legal Med 128(6):913–921. doi:10.1007/s00414-014-1003-3

    Article  Google Scholar 

  20. Lindenbergh A, de Pagter M, Ramdayal G, Visser M, Zubakov D, Kayser M, Sijen T (2012) A multiplex (m)RNA-profiling system for the forensic identification of body fluids and contact traces. Forensic Sci Int Genet 6(5):565–577. doi:10.1016/j.fsigen.2012.01.009

    Article  CAS  Google Scholar 

  21. Lindenbergh A, Maaskant P, Sijen T (2013) Implementation of RNA profiling in forensic casework. Forensic Sci Int Genet 7(1):159–166. doi:10.1016/j.fsigen.2012.09.003

    Article  CAS  Google Scholar 

  22. Jakubowska J, Maciejewska A, Bielawski KP, Pawlowski R (2014) mRNA heptaplex protocol for distinguishing between menstrual and peripheral blood. Forensic Sci Int Genet 13:53–60. doi:10.1016/j.fsigen.2014.07.006

    Article  CAS  Google Scholar 

  23. Haas C, Hanson E, Banemann R, Bento AM, Berti A, Carracedo A, Courts C, De Cock G, Drobnic K, Fleming R, Franchi C, Gomes I, Hadzic G, Harbison SA, Hjort B, Hollard C, Hoff-Olsen P, Keyser C, Kondili A, Maronas O, McCallum N, Miniati P, Morling N, Niederstatter H, Noel F, Parson W, Porto MJ, Roeder AD, Sauer E, Schneider PM, Shanthan G, Sijen T, Syndercombe Court D, Turanska M, van den Berge M, Vennemann M, Vidaki A, Zatkalikova L, Ballantyne J (2015) RNA/DNA co-analysis from human skin and contact traces—results of a sixth collaborative EDNAP exercise. Forensic Sci Int Genet 16:139–147. doi:10.1016/j.fsigen.2015.01.002

    Article  CAS  Google Scholar 

  24. Burton DG (2009) Cellular senescence, ageing and disease. Age 31(1):1–9. doi:10.1007/s11357-008-9075-y

    Article  CAS  Google Scholar 

  25. Eckhart L, Lippens S, Tschachler E, Declercq W (2013) Cell death by cornification. Biochim Biophys Acta 1833(12):3471–3480. doi:10.1016/j.bbamcr.2013.06.010

    Article  CAS  Google Scholar 

  26. Kita T, Yamaguchi H, Yokoyama M, Tanaka T, Tanaka N (2008) Morphological study of fragmented DNA on touched objects. Forensic Sci Int Genet 3(1):32–36. doi:10.1016/j.fsigen.2008.09.002

    Article  CAS  Google Scholar 

  27. Quinones I, Daniel B (2012) Cell free DNA as a component of forensic evidence recovered from touched surfaces. Forensic Sci Int Genet 6(1):26–30. doi:10.1016/j.fsigen.2011.01.004

    Article  CAS  Google Scholar 

  28. Vandewoestyne M, Van Hoofstat D, Franssen A, Van Nieuwerburgh F, Deforce D (2013) Presence and potential of cell free DNA in different types of forensic samples. Forensic Sci Int Genet 7(2):316–320. doi:10.1016/j.fsigen.2012.12.005

    Article  CAS  Google Scholar 

  29. Carola Ingrid Weidner QL, Koch CM, Eisele L, Beier F, Ziegler P, Bauerschlag DO, Jöckel K-H, Erbel R, Mühleisen TW, Zenke M, Brümmendorf TH, Wagner W (2014) Aging of blood can be tracked by DNA methylation changes at just three CpG sites. Genome Biol 15

Download references

Acknowledgments

The authors wish to thank their laboratory colleagues for their invaluable support toward this study and all volunteers who participated in the experiments of the study for their time, cooperation, and patience. Funding for this study was provided by the European Regional Development Fund and the Republic of Cyprus through the Research Promotion Foundation (Project ΝΕΑ ΥΠΟΔΟΜΗ/ΝΕΚΥΠ/0308/12).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marios A. Cariolou.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

Treating age as a continuous variable using sex specific cut-offs to define “shedding status. (DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manoli, P., Antoniou, A., Bashiardes, E. et al. Sex-specific age association with primary DNA transfer. Int J Legal Med 130, 103–112 (2016). https://doi.org/10.1007/s00414-015-1291-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-015-1291-2

Keywords

Navigation